Answer:
lithium
Explanation:
this is because lithium has a valency of 1 and oxygen has a valency of 2 thereby exchanging valency to create Li²0
B; Seawater mixes with freshwater so the water has intermediate salinity
Explanation:
In an estuary, seawater mixes with freshwater so the water has intermediate salinity. Estuaries are usually located in transitional environments.
- Estuary is the wide part of a river where it nears the sea.
- This is called a transitional zone.
- Water from continental rivers usually fresh are brought in close contact with ocean water that is salty.
- The water here is said to be brackish as it is intermediate between salt and seawater.
- Organisms living in such terrain must be be well adapted to changing salinity.
Learn more:
salinity and density brainly.com/question/10491444
#learnwithBrainly
Answer:
ΔH = -470.4kJ
Explanation:
It is possible to sum 2 or more reactions to obtain the ΔH of the reaction you want to study (Hess's law). Using the reactions:
1. CaC2(s) + 2H2O(l) → C2H2(g) + Ca(OH)2(s)ΔH = −414kJ
2. 6C2H2(g) + 3CO2(g) + 4H2O(g) → 5CH2CHCO2H(g)ΔH = 132kJ
6 times the reaction 1.
6CaC2(s) + 12H2O(l) → 6C2H2(g) + 6Ca(OH)2(s)ΔH = −414kJ*6 = -2484kJ
This reaction + 2:
6CaC2(s) + 3CO2(g) + 16H2O(l) → + 6Ca(OH)2(s) + 5CH2CHCO2H(g) ΔH = -2484kJ + 132kJ = -2352kJ
As we want to calculate the net change enthalpy in the formation of just 1 mole of acrylic acid we need to divide this last reaction in 5:
6/5CaC2(s) + 3/5CO2(g) + 16/5H2O(l) → + 6/5Ca(OH)2(s) + CH2CHCO2H(g) ΔH = -2352kJ / 5
<h3>ΔH = -470.4kJ</h3>
Answer:
1.01atm is the pressure of the gas
Explanation:
The difference in heights in the two sides is because of the difference in pressure of the enclosed gas and the atmospheric pressure. This difference is in mm of the nonvolatile liquid. The difference in mm Hg is:
32.3mm * (0.993g/mL / 13.6g/mL) = 2.36mmHg
As atmospheric pressure is 765mm Hg and assuming the gas has more pressure than the atmospheric pressure (There is no illustration), the pressure of the gas is:
765mm Hg + 2.36mm Hg = 767.36 mmHg
In atm:
767.36 mmHg * (1atm / 760 mmHg) =
1.01atm is the pressure of the gas
Answer:
People may seem and act normally during the fugue, or they may appear moderately bewildered and draw no notice. When the fugue is over, however, people are thrown into a new scenario with no recall of how they got there or what they were doing.
Explanation: