Tin is an element called Stannum and has the symbol Sn. Molar mass is the mass of 1 mol of a compound, 1 mol of any substance is made of 6.022 x 10²³ units, these units could be atoms making up an element or molecules making up a compound.
While the number of atoms making up 1 mol is the same for any element, the weight of 1 mol of substance varies from one another.
In tin(Sn) molar mass - 118.71 g/mol
In 118.71 g - there's 1 mol of tin
therefore in 37.6 g of tin - 1 x 37.6 / 118.71 = 0.31 mol
In 37.6 g of tin, there's 0.31 mol
Answer:
Hexose category and ketohexose category
Explanation:
The classification of the Carbohydrate tagatose by carbonyl group is that it is a monosaccharide and has a hexose structure hence it belongs to the Hexose category
Based on the number of carbon atoms the structure has a ketofunctionality hence it is classified under the ketohexose category
Attached below is the remaining part of the solution
Answer:
![[Ag^{+}]=4.2\times 10^{-2}M](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%3D4.2%5Ctimes%2010%5E%7B-2%7DM)
Explanation:
Given:
[AgNO3] = 0.20 M
Ba(NO3)2 = 0.20 M
[K2CrO4] = 0.10 M
Ksp of Ag2CrO4 = 1.1 x 10^-12
Ksp of BaCrO4 = 1.1 x 10^-10

![Ksp=[Ba^{2+}][CrO_{4}^{2-}]](https://tex.z-dn.net/?f=Ksp%3D%5BBa%5E%7B2%2B%7D%5D%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![1.2\times 10^{-10}=(0.20)[CrO_{4}^{2-}]](https://tex.z-dn.net/?f=1.2%5Ctimes%2010%5E%7B-10%7D%3D%280.20%29%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![[CrO_{4}^{2-}]=\frac{1.2\times 10^{-10}}{(0.20)}= 6.0\times 10^{-10}](https://tex.z-dn.net/?f=%5BCrO_%7B4%7D%5E%7B2-%7D%5D%3D%5Cfrac%7B1.2%5Ctimes%2010%5E%7B-10%7D%7D%7B%280.20%29%7D%3D%206.0%5Ctimes%2010%5E%7B-10%7D)
Now,

![Ksp=[Ag^{+}]^{2}[CrO_{4}^{2-}]](https://tex.z-dn.net/?f=Ksp%3D%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5BCrO_%7B4%7D%5E%7B2-%7D%5D)
![1.1\times 10^{-12}=[Ag^{+}]^{2}](6.0\times 10^{-10})](https://tex.z-dn.net/?f=1.1%5Ctimes%2010%5E%7B-12%7D%3D%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5D%286.0%5Ctimes%2010%5E%7B-10%7D%29)
![[Ag^{+}]^{2}]=\frac{1.1\times 10^{-12}}{(6.0\times 10^{-10})}= 1.8\times 10^{-3}](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5D%3D%5Cfrac%7B1.1%5Ctimes%2010%5E%7B-12%7D%7D%7B%286.0%5Ctimes%2010%5E%7B-10%7D%29%7D%3D%201.8%5Ctimes%2010%5E%7B-3%7D)
![[Ag^{+}]=\sqrt{1.8\times 10^{-3}}=4.2\times 10^{-2}M](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-3%7D%7D%3D4.2%5Ctimes%2010%5E%7B-2%7DM)
So, BaCrO4 will start precipitating when [Ag+] is 4.2 x 1.2^-2 M
What exactly is the question you are asking?
The Beer-Lambert law states that A = E*c*l where A is absorbance, E is the molar absorbance coeffecient, c is concentration and l is path length. Therefore the absorbance is directly proportional to concentration, and by increasing the concentration by a factor of 3, absorbance will increase by a factor of 3 giving A = 1.584