Answer:
d. Copper (II) sulfate
Explanation:
Given data:
Mass of Al = 1.25 g
Mass of CuSO₄ = 3.28 g
What is limiting reactant = ?
Solution:
Chemical equation:
2Al + 3CuSO₄ → Al₂ (SO₄)₃ + 3Cu
Number of moles of Al:
Number of moles = mass/molar mass
Number of moles = 1.25 g/ 27 g/mol
Number of moles = 0.05 mol
Number of moles of CuSO₄:
Number of moles = mass/molar mass
Number of moles = 3.28 g/ 159.6 g/mol
Number of moles = 0.02 mol
now we will compare the moles of reactant with product.
Al : Al₂ (SO₄)₃
2 : 1
0.05 : 1/2×0.05=0.025 mol
Al : Cu
2 : 3
0.05 : 3/2×0.05 = 0.075 mol
CuSO₄ : Al₂ (SO₄)₃
3 : 1
0.02 : 1/3×0.02=0.007 mol
CuSO₄ : Cu
3 : 3
0.02 : 0.02
Less number of moles of reactants are produced by CuSO₄ thus it will act as limiting reactant.
Answer: The reaction order with respect to A is m
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
For the given reaction:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In this equation, the order with respect to each reactant is not equal to its stoichiometric coefficient which is represented in the balanced chemical reaction.
Hence, this is not considered as an elementary reaction.
Order with respect to A = m
Order with respect to B = n
Overall order = m+n
Thus order with respect to A is m.
Answer:
See figure 1
Explanation:
If we want to find the acid and the Brønsted-Lowry base, we must remember the definition for each of these molecules:
-) Acid: hydrogen donor
-) Base: hydrogen acceptor
In the <u>caffeine structure,</u> we have several atoms of nitrogen. These nitrogen atoms have the ability to <u>accept</u> hydronium ions (
). Therefore the caffeine molecule will be the base since it can accept
If caffeine is the base, the water must be the acid. So, the water in this reaction donated a hydronium ion.
<u>Thus, caffeine is the base and water the acid. (See figure 1)</u>
Answer: 4.5 x 10e-7
Explanation: 450 x 1e+9 = correct answer
Multiply amount of nanometers by 1e+9 to get the approximate result in meters.