- The change in color from blue to pink of the cobalt complexes here has been the basis of cobalt chloride indicator papers for the detection of the presence of water. It is also used in self-indicating silica gel desiccant granules.
- Pink cobalt species + chloride ions ⇌ Blue cobalt species + water molecules
<u>Explanation</u>:
- The adjustment in color from blue to the pink of the cobalt complexes here has been the premise of cobalt chloride indicator papers for the detection of the presence of water. It is likewise utilized in self-demonstrating silica gel desiccant granules.
Pink cobalt species + chloride particles ⇌ Blue cobalt species + water molecules
-
The response of [Co(H2O)6]2+(aq) + 4Cl–(aq) → [CoCl4]2–(aq) + 6H2O(l) is endothermic. In this manner, as per Le Chatelier's rule, when the temperature is raised, the situation of the balance will move to one side, shaping a greater amount of the blue complex particle at the expense of the pink species.
-
Including concentrated hydrochloric raises the chloride particle fixation, making the equilibrium move to one side, as per Le Chatelier. Including water brings down the chloride particle fixation, moving the equilibrium the other way.
-
As an extension, it is conceivable to show that it is the Cl–particles in the hydrochloric acid that move the balance by including a spatula of sodium chloride rather than the pink arrangement. This delivers a bluer color, however, this may take some time because the salt is delayed to dissolve.
The element iodine (I) is important for the fast and hastened metamorphosis of frog-tadpoles. As amphibians, the tadpoles can live in water and land but when they are born they are iodine-deficient. Tadpoles that do not receive ample amount of iodine become tadpoles until the end of their days.
It’s B. Substitution hope this helps
It has a fixed mass
it does not change with the shape of the container
it cannot be compressed
it has fixed atom and molecules and limited to very small displacement
only vibrational motion occur in the molecules of solid .
The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314