Answer:
300 kPa
Explanation:
P2=P1V1/V2
You can check this by knowing that P and V at constant T have an inverse relationship. Hence, this is correct.
Alpha particle has a mass of 4 (Two protons and two neutrons)
Neutron has a mass of 1
Beta particle has a mass of about 0 (Electron)
Proton has a mass of 1
So the answer is (2) Beta particle
Answer:
pH = 10.9
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to say that the undergoing reaction between this buffer and OH⁻ promotes the formation of more CO₃²⁻ because it acts as the base, we can do the following:

The resulting concentrations are:
![[CO_3^{2-}]=\frac{0.1435mol}{0.25L}=0.574M \\](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B0.1435mol%7D%7B0.25L%7D%3D0.574M%20%5C%5C)
![[HCO_3^{-}]=\frac{0.0265mol}{0.25L}=0.106M](https://tex.z-dn.net/?f=%5BHCO_3%5E%7B-%7D%5D%3D%5Cfrac%7B0.0265mol%7D%7B0.25L%7D%3D0.106M)
Thus, since the pKa of this buffer system is 10.2, the change in the pH would be:

Which makes sense since basic OH⁻ ions were added.
Regards!
Explanation:
The given reaction is as follows.

Initial : 0.160 0.160 0
Change : -x -x 2x
Equilibrium: 0.160 - x 0.160 - x x
It is given that
= [0.160 - x] = 0.036 M
and,
= [0.160 - x] = 0.036 M
so, x = (0.160 - 0.036) M
= 0.124 M
As, [HI] = 2x.
So, [HI] = 
= 0.248 M
As it is known that expression for equilibrium constant is as follows.
![K_{eq} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BHI%5D%5E%7B2%7D%7D%7B%5BH_%7B2%7D%5D%5BI_%7B2%7D%5D%7D)
= 
= 47.46
Thus, we can conclude that the equilibrium constant, Kc, for the given reaction is 47.46.