Answer:
518 mL
Explanation:
We can solve this using Boyle's Law Formula
P1V1 = P2V2
where p1 = initial pressure, p2 = final pressure, v1 = initial volume and v2 = final volume
here , the initial pressure is 1 atm and the initial volume is 725mL
we are given the final pressure 1.4 and we need to find the final volume
so we have p1v1 = p2v2
==> plug in p1 = 1 , v1 = 725 mL and p2 = 1.4
(1)(725) = (1.4)v2
==> multiply 1 and 725
725 = (1.4)(v2)
==> divide both sides by 1.4
v2 = 518
N2 would have a volume of 518mL at 1.4atm
Answer:
Soil minerals form the basis of soil.
Explanation:
They are produced from rocks (parent material) through the processes of weathering and natural erosion. Water, wind, temperature change, gravity, chemical interaction, living organisms and pressure differences all help break down parent material.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133