Answer:
34.02 g.
Explanation:
Hello!
In this case, since the gas behaves ideally, we can use the following equation to compute the moles at the specified conditions:

Now, since the molar mass of a compound is computed by dividing the mass over mass, we obtain the following molar mass:

So probably, the gas may be H₂S.
Best regards!
<u>Given:</u>
H2(g) + Cl2 (g) → 2HCl (g)
<u>To determine:</u>
The enthalpy of the reaction and whether it is endo or exothermic
<u>Explanation:</u>
Enthalpy of a reaction is given by the difference between the enthalpy of formation of reactants and products
ΔH = ∑nHf (products) - ∑nHf (reactants)
= [2Hf(HCl)] - [Hf(H2) + Hf(Cl2)] = 2 (-92.3) kJ = - 184.6 kJ
Since the reaction enthalpy is negative, the reaction is exothermic
<u>Ans:</u> The enthalpy of reaction is -184. kJ and the reaction is exothermic
I think it is D I'm not positive
Answer:
B. double-replacement RXN
Explanation:
more specifically, this is a precipitation rxn.
Let us assume that there is a 100g sample of Opal. The masses of each element will be:
29.2g Si
33.3g O
37.5g H2O
Now we divide each constituent's mass by its Mr to get the moles present
Si: (29.2 / 28) = 1.04
O: (33.3 / 16) = 2.08
H2O: (37.5 / 18) = 2.08
Now we divide by the smallest number and obtain:
Si: 1
O: 2
H2O: 2
Thus, the empirical formula of Opal is:
SiO2 . 2H2O