1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
11

What is the distance between the points (2,5) and (2,2) on the coordinate plane? HELP ASAP I WILL GIVE YOU BRAINLIST!♡

Mathematics
1 answer:
Luba_88 [7]3 years ago
3 0

b. 3 spaces

(2,5) (2,2)

difference of 3 in y axis

You might be interested in
A JET TRAVELS 460 MILES IN 2 HOURS?
Tanzania [10]

Find how fast it travels in one hour:

460 miles / 2 hours = 230 miles per hour.

A) Multiply the speed per hour by the number of hours:

230 x 8 = 1840 miles in 8  hours.

B) 230 x 20 = 4,600 miles in 20 hours.

C) 460 miles /  2 hours = 230 miles per hour.

8 0
2 years ago
Read 2 more answers
Please no "files": Simplify. Express your answer as the given base raised to a single exponent.
Kipish [7]

Answer:

9^48

Step-by-step explanation:

when parenthesis are involved, you multiply the powers

6*8=48

5 0
2 years ago
For the function f (x) = 8 - x2 evaluate f (-2)<br> 4<br> 12<br> -32<br> 0
professor190 [17]
The answer is 12

Explanation: as you replace -2 it will give 4 so when u add 4 to 8 it equals to 12
3 0
2 years ago
Evaluate the surface integral. s x2 + y2 + z2 ds s is the part of the cylinder x2 + y2 = 4 that lies between the planes z = 0 an
Leya [2.2K]
Parameterize the lateral face T_1 of the cylinder by

\mathbf r_1(u,v)=(x(u,v),y(u,v),z(u,v))=(2\cos u,2\sin u,v

where 0\le u\le2\pi and 0\le v\le3, and parameterize the disks T_2,T_3 as

\mathbf r_2(r,\theta)=(x(r,\theta),y(r,\theta),z(r,\theta))=(r\cos\theta,r\sin\theta,0)
\mathbf r_3(r,\theta)=(r\cos\theta,r\sin\theta,3)

where 0\le r\le2 and 0\le\theta\le2\pi.

The integral along the surface of the cylinder (with outward/positive orientation) is then

\displaystyle\iint_S(x^2+y^2+z^2)\,\mathrm dS=\left\{\iint_{T_1}+\iint_{T_2}+\iint_{T_3}\right\}(x^2+y^2+z^2)\,\mathrm dS
=\displaystyle\int_{u=0}^{u=2\pi}\int_{v=0}^{v=3}((2\cos u)^2+(2\sin u)^2+v^2)\left\|{{\mathbf r}_1}_u\times{{\mathbf r}_2}_v\right\|\,\mathrm dv\,\mathrm du+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}((r\cos\theta)^2+(r\sin\theta)^2+0^2)\left\|{{\mathbf r}_2}_r\times{{\mathbf r}_2}_\theta\right\|\,\mathrm d\theta\,\mathrm dr+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}((r\cos\theta)^2+(r\sin\theta)^2+3^2)\left\|{{\mathbf r}_3}_r\times{{\mathbf r}_3}_\theta\right\|\,\mathrm d\theta\,\mathrm dr
=\displaystyle2\int_{u=0}^{u=2\pi}\int_{v=0}^{v=3}(v^2+4)\,\mathrm dv\,\mathrm du+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}r^3\,\mathrm d\theta\,\mathrm dr+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}r(r^2+9)\,\mathrm d\theta\,\mathrm dr
=\displaystyle4\pi\int_{v=0}^{v=3}(v^2+4)\,\mathrm dv+2\pi\int_{r=0}^{r=2}r^3\,\mathrm dr+2\pi\int_{r=0}^{r=2}r(r^2+9)\,\mathrm dr
=136\pi
7 0
3 years ago
Let f(x)=-2-7 and g(x)= -4x+6. Find (f*g)(-5)
Masja [62]
If (-5) = x then the anwser should be
-234

5 0
2 years ago
Other questions:
  • Find the center of the circle whose equation is (x - 8) 2 + (y + 2) 2 = 64.
    12·2 answers
  • 6x
    14·1 answer
  • PLZZ HELP ASAP !!!!!!!!
    9·1 answer
  • Can someone please help me with this question?
    9·1 answer
  • Write 5/z^-3 as a positive exponent
    9·1 answer
  • Every year, Mrs. Woods gives an end of the year math project as a major grade. The circle graph below
    9·1 answer
  • On average, cody runs 4 miles in 38 minutes. How fast should he plan to run a 10-mile race if he maintains this place.
    14·1 answer
  • Explain how to find 45% of a number
    12·1 answer
  • PLEASE HELP ASAP!!!!!! i’ll mark brainlest
    5·2 answers
  • Please help with this question.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!