Function is p(x)=(x-4)^5(x^2-16)(x^2-5x+4)(x^3-64)
first factor into (x-r1)(x-r2)... form
p(x)=(x-4)^5(x-4)(x+4)(x-4)(x-1)(x-4)(x^2+4x+16)
group the like ones
p(x)=(x-4)^8(x+4)^1(x-1)^1(x^2+4x+16)
multiplicity is how many times the root repeats in the function
for a root r₁, the root r₁ multiplicity 1 would be (x-r₁)^1, multility 2 would be (x-r₁)^2
so
p(x)=(x-4)^8(x+4)^1(x-1)^1(x^2+4x+16)
(x-4)^8 is the root 4, it has multiplicity 8
(x-(-4))^1 is the root -4 and has multiplicity 1
(x-1)^1 is the root 1 and has multiplity 1
(x^2+4x+16) is not on the real plane, but the roots are -2+2i√3 and -2-2i√3, each multiplicity 1 (but don't count them because they aren't real
baseically
(x-4)^8 is the root 4, it has multiplicity 8
(x-(-4))^1 is the root -4 and has multiplicity 1
(x-1)^1 is the root 1 and has multiplity 1
Answer:
b
Step-by-step explanation:
Answer:
This construction shows how to draw the perpendicular bisector of a given line segment with compass and straightedge or ruler. This both bisects the segment (divides it into two equal parts, and is perpendicular to it. It finds the midpoint of the given line segment.
Answer:
-1 and 9
Step-by-step explanation:
To solve the quadratic, factor and set its factors equal to 0. Factoring is the action of breaking up a polynomial into pieces which multiply to make it. The factors are found by multiplying numbers to make C and add to B of
.
Here c = -9 and b = -8. The numbers -9 and 1 multiply to -9 and add to -8. These are the factors (x-9)(x+1).
Set each equal to 0 and solve for x.
x-9 = 0
x = 9
x+1 =0
x = -1
Answer:
see explanation
Step-by-step explanation:
I don't have graphing facilities but can give you the vertex and 1 other point.
Given a parabola in standard form
y = ax² + bx + c ( a ≠ 0 )
Then the x- coordinate of the vertex is
x = - 
y = - x² - 2x + 8 ← is in standard form
with a = - 1 and b = - 2 , then
x = -
= - 1
Substitute x = - 1 into the equation for corresponding value of y
y = - (- 1)² - 2(- 1) + 8 = - 1 + 2 + 8 = 9
vertex = (- 1, 9 )
To obtain another point substitute any value for x into the equation
x = 0 : y = 0 - 0 + 8 , then (0, 8 ) is a point on the graph
x = 2 : y = - (2)² - 2(2) + 8 = - 4 - 4 + 8 = 0 then (2, 0 ) is a point on the graph