1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
3 years ago
12

Through the points (-10,-20) and (5,10)

Mathematics
1 answer:
pychu [463]3 years ago
7 0
Do you need to find the m?
If yes so the solution will be like that
(10- -20) / (5- - 10) = (10+20)/(5+10) = 30/15= 2
You might be interested in
The table shows the number of wins of each school baseball team over the last six years. Find the mean absolute deviation for ea
Gwar [14]

Answer: Bears: 1.80 Saints: 1.40

Step-by-step explanation: Hope this helps!!

8 0
2 years ago
The lifetime X (in hundreds of hours) of a certain type of vacuum tube has a Weibull distribution with parameters α = 2 and β =
stich3 [128]

I'm assuming \alpha is the shape parameter and \beta is the scale parameter. Then the PDF is

f_X(x)=\begin{cases}\dfrac29xe^{-x^2/9}&\text{for }x\ge0\\\\0&\text{otherwise}\end{cases}

a. The expectation is

E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx

To compute this integral, recall the definition of the Gamma function,

\Gamma(x)=\displaystyle\int_0^\infty t^{x-1}e^{-t}\,\mathrm dt

For this particular integral, first integrate by parts, taking

u=x\implies\mathrm du=\mathrm dx

\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}

E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x

E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx

Substitute x=3y^{1/2}, so that \mathrm dx=\dfrac32y^{-1/2}\,\mathrm dy:

E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy

\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}

The variance is

\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2

The second moment is

E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx

Integrate by parts, taking

u=x^2\implies\mathrm du=2x\,\mathrm dx

\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}

E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx

E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx

Substitute x=3y^{1/2} again to get

E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9

Then the variance is

\mathrm{Var}[X]=9-E[X]^2

\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}

b. The probability that X\le3 is

P(X\le 3)=\displaystyle\int_{-\infty}^3f_X(x)\,\mathrm dx=\frac29\int_0^3xe^{-x^2/9}\,\mathrm dx

which can be handled with the same substitution used in part (a). We get

\boxed{P(X\le 3)=\dfrac{e-1}e\approx0.632}

c. Same procedure as in (b). We have

P(1\le X\le3)=P(X\le3)-P(X\le1)

and

P(X\le1)=\displaystyle\int_{-\infty}^1f_X(x)\,\mathrm dx=\frac29\int_0^1xe^{-x^2/9}\,\mathrm dx=\frac{e^{1/9}-1}{e^{1/9}}

Then

\boxed{P(1\le X\le3)=\dfrac{e^{8/9}-1}e\approx0.527}

7 0
2 years ago
PLZ HELP
Juliette [100K]

Answer:

<em>N = 1/2x + 6</em>

Step-by-step explanation:

We know that Jane has 6 more shoes than 1/2 of what Mercedes has. We can use this information to make an equation.

<em>N (or number of shoes Jane has) is equal to 1/2x (or the number of shoes Mercedes has) plus 6.</em>

When written out we get our answer of:

<em>N + 1/2x + 6</em>

3 0
3 years ago
A quantity of gas has a volume of 0.20 cubic meter and an absolute temperature of 333 degrees kelvin. When the temperature of th
mezya [45]
   
\displaystyle  \\ &#10;\texttt{Notations: } \\ &#10;P = \texttt{pressure} \\ &#10;V = \texttt{volume} \\ &#10;T = \texttt{absolute temperature} \\  \\ &#10;\texttt{We use the formula: }~   \frac{P \times V}{T} = \texttt{constant} \\  \\ &#10;\frac{P_1 \times V_1}{T_1} = \frac{P_2 \times V_2}{T_2}  \\  \\ &#10;P_1 = P_2 \\  \\ &#10;\Longrightarrow~~\frac{V_1}{T_1} = \frac{V_2}{T_2}\\\\ &#10;\Longrightarrow~V_2 =\frac{V_1 \times T_2}{T_1}=  \frac{0.2~m^3 \times 533^oK}{333^oK}=\frac{106.6}{333}= 0.3(201)\approx \boxed{0,32~m^3}



8 0
3 years ago
A federal report finds that lie detector tests given to truthful persons have probability about 0.2 of suggesting that the perso
Serjik [45]

Answer:

six-nine

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Is $1.25 per song a unit rate
    12·2 answers
  • Ellen thinks that if a line has no slope, then it never touches the y-axis. Which line proves that her statement is incorrect?
    14·2 answers
  • True or false: The y-intercept is (0.3) and it represents the initial cost of the ride.
    12·1 answer
  • Write a piecewise function that models each telephone billing plan. Then graph the function.
    11·1 answer
  • A stock was priced at $12., per share. It rose in price by s3 per share. What was its
    11·1 answer
  • CAN SOMEONE HELP ME PLEASE
    6·2 answers
  • Question 12(Multiple Choice Worth 5 points)
    6·1 answer
  • Pls helppp! i don’t understand:|
    6·2 answers
  • 5х2-7x-6=0 <br><br> factored form
    6·1 answer
  • Dounuts or snacks or chips
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!