Answer:
If the limit that you want to find is
then you can use the following proof.
Step-by-step explanation:
Let
and
be the given polinomials. Then
![\dfrac{P(x)}{Q(x)}=\dfrac{x^{n}(a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n})}{x^{m}(b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m})}=x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}](https://tex.z-dn.net/?f=%5Cdfrac%7BP%28x%29%7D%7BQ%28x%29%7D%3D%5Cdfrac%7Bx%5E%7Bn%7D%28a_%7Bn%7D%2Ba_%7Bn-1%7Dx%5E%7B-1%7D%2Ba_%7Bn-2%7Dx%5E%7B-2%7D%2B%5Ccdots%20%2Ba_%7B2%7Dx%5E%7B-%28n-2%29%7D%2Ba_%7B1%7Dx%5E%7B-%28n-1%29%7D%2Ba_%7B0%7Dx%5E%7B-n%7D%29%7D%7Bx%5E%7Bm%7D%28b_%7Bm%7D%2Bb_%7Bm-1%7Dx%5E%7B-1%7D%2Bb_%7Bn-2%7Dx%5E%7B-2%7D%2B%5Ccdots%2Bb_%7B2%7Dx%5E%7B-%28m-2%29%7D%2Bb_%7B1%7Dx%5E%7B-%28m-1%29%7D%2Bb_%7B0%7Dx%5E%7B-m%7D%29%7D%3Dx%5E%7Bn-m%7D%5Cdfrac%7Ba_%7Bn%7D%2Ba_%7Bn-1%7Dx%5E%7B-1%7D%2Ba_%7Bn-2%7Dx%5E%7B-2%7D%2B%5Ccdots%20%2Ba_%7B2%7Dx%5E%7B-%28n-2%29%7D%2Ba_%7B1%7Dx%5E%7B-%28n-1%29%7D%29%2Ba_%7B0%7Dx%5E%7B-n%7D%7D%7Bb_%7Bm%7D%2Bb_%7Bm-1%7Dx%5E%7B-1%7D%2Bb_%7Bn-2%7Dx%5E%7B-2%7D%2B%5Ccdots%2Bb_%7B2%7Dx%5E%7B-%28m-2%29%7D%2Bb_%7B1%7Dx%5E%7B-%28m-1%29%7D%2Bb_%7B0%7Dx%5E%7B-m%7D%7D)
Observe that
![\lim_{x\to \infty}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\dfrac{a_{n}}{b_{m}}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5Cinfty%7D%5Cdfrac%7Ba_%7Bn%7D%2Ba_%7Bn-1%7Dx%5E%7B-1%7D%2Ba_%7Bn-2%7Dx%5E%7B-2%7D%2B%5Ccdots%20%2Ba_%7B2%7Dx%5E%7B-%28n-2%29%7D%2Ba_%7B1%7Dx%5E%7B-%28n-1%29%7D%29%2Ba_%7B0%7Dx%5E%7B-n%7D%7D%7Bb_%7Bm%7D%2Bb_%7Bm-1%7Dx%5E%7B-1%7D%2Bb_%7Bn-2%7Dx%5E%7B-2%7D%2B%5Ccdots%2Bb_%7B2%7Dx%5E%7B-%28m-2%29%7D%2Bb_%7B1%7Dx%5E%7B-%28m-1%29%7D%2Bb_%7B0%7Dx%5E%7B-m%7D%7D%3D%5Cdfrac%7Ba_%7Bn%7D%7D%7Bb_%7Bm%7D%7D)
and
![\lim_{x\to \infty} x^{n-m}=\begin{cases}0& \text{if}\,\, nm\end{cases}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5Cinfty%7D%20x%5E%7Bn-m%7D%3D%5Cbegin%7Bcases%7D0%26%20%5Ctext%7Bif%7D%5C%2C%5C%2C%20n%3Cm%5C%5C%5Cinfty%20%26%20%5Ctext%7Bif%7D%5C%2C%5C%2C%20n%3Em%5Cend%7Bcases%7D)
Then
![\lim_{x\to \infty}=\lim_{x\to \infty}x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\begin{cases}0 & \text{if}\,\, nm \end{cases}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5Cinfty%7D%3D%5Clim_%7Bx%5Cto%20%5Cinfty%7Dx%5E%7Bn-m%7D%5Cdfrac%7Ba_%7Bn%7D%2Ba_%7Bn-1%7Dx%5E%7B-1%7D%2Ba_%7Bn-2%7Dx%5E%7B-2%7D%2B%5Ccdots%20%2Ba_%7B2%7Dx%5E%7B-%28n-2%29%7D%2Ba_%7B1%7Dx%5E%7B-%28n-1%29%7D%2Ba_%7B0%7Dx%5E%7B-n%7D%7D%7Bb_%7Bm%7D%2Bb_%7Bm-1%7Dx%5E%7B-1%7D%2Bb_%7Bn-2%7Dx%5E%7B-2%7D%2B%5Ccdots%2Bb_%7B2%7Dx%5E%7B-%28m-2%29%7D%2Bb_%7B1%7Dx%5E%7B-%28m-1%29%7D%2Bb_%7B0%7Dx%5E%7B-m%7D%7D%3D%5Cbegin%7Bcases%7D0%20%26%20%5Ctext%7Bif%7D%5C%2C%5C%2C%20n%3Cm%5C%5C%5Cinfty%20%26%20%5Ctext%7Bif%7D%5C%2C%5C%2Cn%3Em%20%5Cend%7Bcases%7D)
Answer:
<
Explanation:
turn 5/11 into a decimal: 0.45 which is LESS than 0.50 (0.5).
How many 1/3 pieces can be made from 2 pizzas, we know it is 6 and it is arrived by dividing 2 by 1/3 or multiplying by its reciprocal 3/1.
Hence to find how many 3/10 pieces can be made from 12/15 pizza, we have to divide 12/15 by 3/10 or multiplying by its reciprocal 10/3, i.e.
12/15 times 10/3= 8/3 or 2 2/3
What does that mean? This means that while 2 three-tenths pieces can be made, 2/3of 3/10 i.e. <span>2/3×3/10=2/10=1/5</span> or one-fifth of pizza will be left out.
So the answer is 2 three-tenths pieces can be made, and one-fifth pizza will be left out.
Answer:
45?
Step-by-step explanation:
Answer:
It is C. 233 because if you multiply 5x5x5 thats 125
If you multiply 12x3x3, its 108. So add 108+125 and that will be your final answer. Hope this helps and if so then please mark as brainliest. Remember that volume= length x width x height.