1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ludmilkaskok [199]
3 years ago
8

Can somebody please give me a formula for the combustion reaction of gasoline inside of a car? Thank you

Chemistry
1 answer:
Leni [432]3 years ago
5 0
I have attached a photo of the formula. See attached.

Pretty much, octane reacts with oxygen to go to products.
The products are water carbon dioxide, and heat. 

You might be interested in
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
3 years ago
Read 2 more answers
Can someone tell me how to solve this step by step? I got the answer but I want to know how to solve it I have a test !!!!
UNO [17]
C becuase that is the one that you would have to do becuase that is the only option
6 0
3 years ago
An unknown gas Q requires 2.67 times as long to effuse under the same conditions as the same amount of nitrogen gas. What is the
Misha Larkins [42]

Answer:

The correct answer is 199.66 grams per mole.

Explanation:

Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,  

R1/R2 = √ M2/√ M1

Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.  

Rate Q/Rate N2 = √M of N2/ √M of Q

The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67

Now putting the values we get,  

rate of N2/2.67/rate of N2 = √28/ √M of Q

√M of Q = √ 28 × 2.67

M of Q = (√ 28 × 2.67)²

M of Q = 199.66 grams per mole

3 0
4 years ago
What is Ionization Energy?
NARA [144]

Answer:

Ionization energy is a measure of the difficulty involved in  removing an electron from an atom or ion or the tendency of an atom or ion to surrender an electron.

Explanation:

4 0
3 years ago
Read 2 more answers
Why do hotspots appear to move in relation to tectonic plates?
Vikentia [17]

Answer:The heat that fuels the hot spot comes from very deep in the planet. This heat causes the mantle in that region to melt. The molten magma rises up and breaks through the crust to form a volcano. While the hot spot stays in one place, rooted to its deep source of heat, the tectonic plate is slowly moving above it.

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the correct sequence of eras of the geologic time scale in order from oldest to youngest ?
    9·2 answers
  • The chemical combination of two or more different atoms in fixed amounts is called a(n)?
    15·1 answer
  • What is an example of a physical change
    10·2 answers
  • Describe the relationship between a hypothesis, a theory, and a natural law.
    10·1 answer
  • Colin is writing a story in which a spy damages a fusion nuclear reactor, the reaction runs out of control, and the reactor expl
    12·2 answers
  • In a given chemical reaction the energy of the products is greater than the energy of the reactance which statement is true for
    11·1 answer
  • A true statement about mass is that:
    6·1 answer
  • Does ecstasy drug effect how long you live?
    5·1 answer
  • A more reactive metal displaces a less reactive metal from salt solution. Such reactions are called:
    8·2 answers
  • The basic principles of atomic theory were first conceived by:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!