The equivalence of the equation is 5x + 48 = 5x + 3.
Since 48 cannot be equal to 3, hence there are no solution.
<h3>What is the value of x?</h3>
Given the equation; x-4[ x - 2( x + 6) ] = 5x + 3
We remove the parentheses
x-4[ x - 2( x + 6) ] = 5x + 3
x-4[ x - 2x - 12 ] = 5x + 3
x - 4x + 8x + 48 = 5x + 3
5x + 48 = 5x + 3
We can go further and collect like terms
5x - 5x + 48 = 3
48 ≠ 3
Since 48 cannot be equal to 3, hence there are no solution.
Learn more about equations here: brainly.com/question/14686792
#SPJ1
He is wrong because 12:55 is one hr and you still need to get to 1:25 but he only got to 1:01 so he did not get the correct answer
Answer:
900 yards
Step-by-step explanation:
540/3=180
180x5=900
Given the function :
![f(x)=\sqrt[]{x+2}+1](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B%5D%7Bx%2B2%7D%2B1)
We need to find each missing value
Given x = -3 , -2 , -1 , 2 , 7
So, substitute with each value of x to find the corresponding value of f(x)
![x=-3\rightarrow f(x)=\sqrt[]{-3+2}+1=\sqrt[]{-1}+1](https://tex.z-dn.net/?f=x%3D-3%5Crightarrow%20f%28x%29%3D%5Csqrt%5B%5D%7B-3%2B2%7D%2B1%3D%5Csqrt%5B%5D%7B-1%7D%2B1)
So, there is no value for f(x) at x = -3 (the function undefined because the square root of -1)
![\begin{gathered} x=-2\rightarrow f(x)=\sqrt[]{-2+2}+1=\sqrt[]{0}+1=0+1=1 \\ \\ x=-1\rightarrow f(x)=\sqrt[]{-1+2}+1=\sqrt[]{1}+1=1+1=2 \\ \\ x=2\rightarrow f(x)=\sqrt[]{2+2}+1=\sqrt[]{4}+1=2+1=3 \\ \\ x=7\rightarrow f(x)=\sqrt[]{7+2}+1=\sqrt[]{9}+1=3+1=4 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D-2%5Crightarrow%20f%28x%29%3D%5Csqrt%5B%5D%7B-2%2B2%7D%2B1%3D%5Csqrt%5B%5D%7B0%7D%2B1%3D0%2B1%3D1%20%5C%5C%20%20%5C%5C%20x%3D-1%5Crightarrow%20f%28x%29%3D%5Csqrt%5B%5D%7B-1%2B2%7D%2B1%3D%5Csqrt%5B%5D%7B1%7D%2B1%3D1%2B1%3D2%20%5C%5C%20%20%5C%5C%20x%3D2%5Crightarrow%20f%28x%29%3D%5Csqrt%5B%5D%7B2%2B2%7D%2B1%3D%5Csqrt%5B%5D%7B4%7D%2B1%3D2%2B1%3D3%20%5C%5C%20%20%5C%5C%20x%3D7%5Crightarrow%20f%28x%29%3D%5Csqrt%5B%5D%7B7%2B2%7D%2B1%3D%5Csqrt%5B%5D%7B9%7D%2B1%3D3%2B1%3D4%20%5Cend%7Bgathered%7D)
the graph of the function and the points will be as shown in the following image :
The correct answer is 7/9