Try describing the amount of numbers in the square u know like "shade covers 2/4 of the square''
Answer:
b
Step-by-step explanation:
We need to find the height of the cylinder
pythagorean theorem
15 is the bottom leg (30/2=15)
17 is hypotonuse
b=height
15^2+b^2=17^2
225+b^2=289
minus 225 both sides
b^2=64
sqrt both sides b=8
Vcone=(1/3)hpir^2
d/2=r=30/2=15
h=8
V=(1/3)8pi15^2
V=(1/3)8pi225
V=8pi75
V=600pi
aprox pi=3.14159256
V=1884.955536 in^3
round if nececary
Answer:
Her son is 10 years old.
Step-by-step explanation:
Let son be x
Ellie is 4x
In 5 years time: Her son = x + 5
Ellie = 4x + 5
Given that she will then be 3 times as old as her son: 4x + 5 = 3(x + 5)
Solve x: 4x + 5 = 3(x + 5) ,4x + 5 = 3x + 15
x = 10
Check the picture below, so the parabola looks more or less like so, with a vertex at (0 , -7), let's recall the vertex is half-way between the focus point and the directrix.
so this horizontal parabola opens up to the left-hand-side, meaning that the "P" distance is a negative value.
![\textit{horizontal parabola vertex form with focus point distance} \\\\ 4p(x- h)=(y- k)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h+p,k)}\qquad \stackrel{directrix}{x=h-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\supset}\qquad \stackrel{"p"~is~positive}{op ens~\subset} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Ctextit%7Bhorizontal%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Bp%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7Bx%3Dh-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Csupset%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Csubset%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\begin{cases} h=0\\ k=-7\\ p=-9 \end{cases}\implies 4(-9)(x-0)~~ = ~~[y-(-7)]^2 \\\\\\ -36x=(y+7)^2\implies x=-\cfrac{1}{36}(y+7)^2](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20h%3D0%5C%5C%20k%3D-7%5C%5C%20p%3D-9%20%5Cend%7Bcases%7D%5Cimplies%204%28-9%29%28x-0%29~~%20%3D%20~~%5By-%28-7%29%5D%5E2%20%5C%5C%5C%5C%5C%5C%20-36x%3D%28y%2B7%29%5E2%5Cimplies%20x%3D-%5Ccfrac%7B1%7D%7B36%7D%28y%2B7%29%5E2)