Yes, Only bacteria can convert molecular nitrogen, into a form which can be utilized by other living beings such as plants. The nitrogen fixed by the bacteria, by this process, become available to the plants, which uptakes it, for their own growth, and is also accumulated in their seeds. Further, leguminous plants have nitrogen-fixing bacteria associated with them in synergy. They provide the plant with additional nitrogen, and in exchange obtain nutrients from the plant, for their growth and division.
Answer:
eukaryote cells have a membrane -bound nucleus and prokaryote cells do not. the nucleus is where eukaryote ls store their genetic information and prokaryotes have no membrane bound organelles.
Answer: Interventricular foramen
Explanation:
<u>The cerebrospinal fluid is a fluid that covers the brain and spinal cord. It circulates through the subarachnoid space, the cerebral ventricles and the ependymal canal</u>. Several diseases alter its composition and its study usually detects meningeal infections, carcinomatosis and hemorrhages. Some of its functions are:
- Hydropneumatic support against local pressure for the encephalon.
- Eliminates metabolites from the central nervous system.
- Protects the central nervous system from trauma.
This fluid also fills the ventricles, which are large open structures deep within the brain and help keep the brain buoyant and cushioned. The lateral ventricles are the largest ventricles and connect to the third ventricle through the intraventricular foramen. This third ventricle is a narrow, medial cavity located between the diencephalic masses. <u>Then, the interventricular foramina are channels that connect with the ventricles of the lateral walls and with the third ventricle</u>, at the level of the midline of the brain. Like these channels, they allow cerebrospinal fluid to circulate through the rest of the ventricular system of the brain. The walls of the foramina also contain choroid plexuses, responsible for the production of cerebrospinal fluid, which continue in both the lateral ventricles and the third ventricle. After reaching the third ventricle, the cerebrospinal fluid travels through the median aperture into the subarachnoid space at the base of the brain.
By the process of meiosis