1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notka56 [123]
3 years ago
11

Which pair is a solution of the equation? -7x+3y=2

Mathematics
1 answer:
stira [4]3 years ago
5 0

Answer:

7/3

Step-by-step explanation:

You might be interested in
ILL GIVE U BRAINLISTTT!!!!!
amm1812

Hi

exponnential cannot be negative.  So A is out  

quadratic function cannot also. So B is out.  

C is the only one remaining...

5 0
3 years ago
Read 2 more answers
Tom brought 2 cakes to class for the
jok3333 [9.3K]
Your answer is gonna be 1/25
5 0
2 years ago
Suppose the number of children in a household has a binomial distribution with parameters n=12n=12 and p=50p=50%. Find the proba
nadya68 [22]

Answer:

a) 20.95% probability of a household having 2 or 5 children.

b) 7.29% probability of a household having 3 or fewer children.

c) 19.37% probability of a household having 8 or more children.

d) 19.37% probability of a household having fewer than 5 children.

e) 92.71% probability of a household having more than 3 children.

Step-by-step explanation:

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

In this problem, we have that:

n = 12, p = 0.5

(a) 2 or 5 children

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 5) = C_{12,5}.(0.5)^{5}.(0.5)^{7} = 0.1934

p = P(X = 2) + P(X = 5) = 0.0161 + 0.1934 = 0.2095

20.95% probability of a household having 2 or 5 children.

(b) 3 or fewer children

P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.5)^{0}.(0.5)^{12} = 0.0002

P(X = 1) = C_{12,1}.(0.5)^{1}.(0.5)^{11} = 0.0029

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.0537

P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0002 + 0.0029 + 0.0161 + 0.0537 = 0.0729

7.29% probability of a household having 3 or fewer children.

(c) 8 or more children

P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 8) = C_{12,8}.(0.5)^{8}.(0.5)^{4} = 0.1208

P(X = 9) = C_{12,9}.(0.5)^{9}.(0.5)^{3} = 0.0537

P(X = 10) = C_{12,10}.(0.5)^{10}.(0.5)^{2} = 0.0161

P(X = 11) = C_{12,11}.(0.5)^{11}.(0.5)^{1} = 0.0029

P(X = 12) = C_{12,12}.(0.5)^{12}.(0.5)^{0} = 0.0002

P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) = 0.1208 + 0.0537 + 0.0161 + 0.0029 + 0.0002 = 0.1937

19.37% probability of a household having 8 or more children.

(d) fewer than 5 children

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{12,0}.(0.5)^{0}.(0.5)^{12} = 0.0002

P(X = 1) = C_{12,1}.(0.5)^{1}.(0.5)^{11} = 0.0029

P(X = 2) = C_{12,2}.(0.5)^{2}.(0.5)^{10} = 0.0161

P(X = 3) = C_{12,3}.(0.5)^{3}.(0.5)^{9} = 0.0537

P(X = 4) = C_{12,4}.(0.5)^{4}.(0.5)^{8} = 0.1208

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.0002 + 0.0029 + 0.0161 + 0.0537 + 0.1208 = 0.1937

19.37% probability of a household having fewer than 5 children.

(e) more than 3 children

Either a household has 3 or fewer children, or it has more than 3. The sum of these probabilities is 100%.

From b)

7.29% probability of a household having 3 or fewer children.

p + 7.29 = 100

p = 92.71

92.71% probability of a household having more than 3 children.

5 0
3 years ago
-3 + (-5) would it be negative seven
alina1380 [7]
You do add the two negatives and get a negative answer but -3 + -5 = -8
6 0
3 years ago
Read 2 more answers
12.<br>The container shown has a capacity of 60 milliliters.<br>What fraction of it is empty?<br>​
White raven [17]

This is an incomplete question, the image is shown below.

Answer : The fraction empty container is, \frac{7}{12}

Step-by-step explanation :

As we are given that:

The capacity of container = 60 mL

In the given figure, the container is filled with 25 mL.

That means,

60 - 25 = 35 mL container is empty.

Now we have to calculate the fraction of it is empty.

The fraction of it is empty = \frac{\text{Capacity of empty container}}{\text{Total capacity of container}}

The fraction of it is empty = \frac{35mL}{60mL}

The fraction of it is empty = \frac{7}{12}

Therefore, the fraction empty container is, \frac{7}{12}

7 0
3 years ago
Other questions:
  • When you divide any number by a fraction less than one, what happens to the original number?
    7·1 answer
  • Please help!! Find two numbers whose sum is 26 and whose product is 168.
    5·1 answer
  • Find the mean, median, and mode. Round to the nearest tenth when necessary.
    8·2 answers
  • Someone please help !
    7·1 answer
  • What is 5 divided 49 how do you write the problem
    6·1 answer
  • X-3=2x-3-x<br> Please solve with answer and how you got the answer
    10·1 answer
  • What is the value of x in the diagram below?<br> 49<br> 14<br> 2
    15·1 answer
  • If you and answer any of these 7-9 that would really help!!<br> (pic below)
    13·2 answers
  • Change the decimal into a fraction easy help please :)
    7·2 answers
  • Please help me with this ok Brainliests.<br>​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!