Step-by-step explanation:

In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2
Answer:
9.09 , 0.9 , 0.09 , 0.009 , 0.0009
Explanation:
The more places behind a decimal point a number is, the smaller it is
Hope this helped you! :)
Answer:
18 and 335
Step-by-step explanation:
y = 18x + 11
x * y = 6030
x * (18x + 11) = 6030
18x^2 + 11x = 6030
18x^2 + 11x - 6030 = 0
(18x + 335)(x - 18) = 0
18x + 335 = 0 x - 18 = 0
18x = -335 x = 18
x = -335/18
x is gonna have to be a positive number...so x = 18
y = 18x + 11
y = 18(18) + 11
y = 324 + 11
y = 335
so ur numbers are 18 and 335
Hi there! The answer is 5/6 hours (which is 50 minutes)
To find the total time Ann spent on her papers, we must add the fractions.

In the first step, we had to make the denominators the same. We need to use the LCM of the numbers 2 and 3. LCM(2,3) = 6.
In the second step we added the fractions. Remember that we only need to add the numerators (the denominator remains the same).
~ Hope this helps you!
The answer is the third option from the top