Answer:
a.) a = 0 ms⁻²
b.) a = 9.58 ms⁻²
c.) a = 7.67 ms⁻²
Explanation:
a.)
Acceleration (a) is defined as the time rate of change of velocity
Given data
Final velocity = v₂ = 0 m/s
Initial velocity = v ₁ = 0 m/s
As the space shuttle remain at rest for the first 2 minutes i.e there is no change in velocity so,
a = 0 ms⁻²
b.)
Given data
As the space shuttle start from rest, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 8 min = 480 s
By the definition of Acceleration (a)

a = 9.58 ms⁻²
c.)
Given data
As the space shuttle is at rest for first 2 min then start moving, So initial velocity is zero
Initial velocity = v₁ = 0 ms⁻¹
Final velocity = v₂ = 4600 ms⁻¹
Time = t = 10 min = 600 s
By the definition of Acceleration (a)

a = 7.67 ms⁻²
I attached the full question.
We know that for a parallel-plate capacitor the surface charge density is given by the following formula:

Where V is the voltage between the plates and d is separation.
Voltage is by definition:

Voltage is analog to the mechanical work done by the force.
Above formula is correct only If the field is constant, and we can assume that it is since no function has been given.
The charge density would then be:

Please note that elecric permittivity of air is very close to elecric permittivity of vacum, it is common to use them <span>interchangeably</span>.
Answer:
Extraneous
Explanation:
Extraneous variables are any variables that you are not intentionally studying in your experiment or test
Answer:
1 W = 1 J / sec Definition of watt is 1 joule / sec
So if a bulb uses 75 J / sec it must use
75 J/s * 60 sec / min = 4500 J/min energy used by bulb
If bulb is 15% efficient then the light delivered is
P = 4500 J / min * .15 = 675 J / min