Waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths
The property of liquid oxygen that makes it especially difficult and potentially harmful to work with at home would be its cryogenic temperature. Liquid oxygen is being produced from the compression of oxygen gas to -196 degrees Celsius. As you can see, it has a very cold temperature that is why it used in cryogenics. Although liquid oxygen is non-toxic to humans, it would cause burns that are severe when being touched. Also, it would make certain materials brittle and unstable. Another property that makes it dangerous for use at home would be that it is very flammable. Proper handling is a must for this substance.
Answer:
answer - c
answer - a
Explanation:
<h2>I hope answer correct</h2><h2><em><u>pl</u></em><em><u>ease</u></em><em><u> like</u></em><em><u> me</u></em></h2>
Answer:
= 29.64 g NaNO3
Explanation:
Molarity is given by the formula;
Molarity = Moles/Volume in liters
Therefore;
Number of moles = Molarity × Volume in liters
= 1.55 M × 0.225 L
= 0.34875 moles NaNO3
Thus; 0.34875 moles of NaNO3 is needed equivalent to;
= 0.34875 moles × 84.99 g/mol
= 29.64 g
Answer:
The limiting reactant is the ZnS
Explanation:
The equation for this reaction is:
2 ZnS + 3O₂ = 2 ZnO + 2 SO₂
2 moles of zinc sulfure reacts with 3 moles of oxygen.
Then, 1.72 mol of ZnS would react with ( 1.72 .3)/2 = 2.58 moles of O₂
If we have 3.04 moles, then the oxygen is the reactant in excess.
Let's confirm, the ZnS as the limiting reactant.
3 moles of oxygen react with 2 moles of sulfure.
Then, 3.04 moles of O₂ would react with (3.04 .2) / 3 = 2.02 moles of ZnS
We have 1.72 moles of Zn S and it is not enough for the 2.02 moles that we need, for the reaction.