The representative elements are elements where the s and p orbitals are filling. The transition elements are elements where the d orbitals (groups 3–11 on the periodic table) are filling, and the inner transition metals are the elements where the f orbitals are filling.
Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M
Answer:
Source, processing and distribution are the components of water system.
Explanation:
There are three parts of water system i. e. the source, the processing and distribution. Water is extracted from a source such as underground water, lake or river etc. After extraction this water is transported to the processing unit where it can be purified and after purification it is distributed to all places where it is needed. Potential energy is a form of energy that flows through this water system because the water is extracted from a depth and we know that depth and height refers to potential energy.
In the so called rain shadow effect we have interaction between all of the four major Earth spheres. When we have a coastal region where there's a high mountain range, the part of the mountain that is facing the sea will differ a lot from the part of the mountain that is on the other side. The water from the sea evaporates. The water vapor makes the air wet. The warm and wet air masses from the sea will come to the coastline, once they reach the mountain they will start to accumulate as they can not pass through it. As they accumulate rainfall appears. The rainfall contributes to a lush vegetation on this side of the mountain (windward side). The rain shadow effect appears on the leeward side of the mountain, and it mostly gets dry, strong, downward winds. These conditions result in drier climate, much less vegetation, and much increased erosion. Thus we can easily see that we have in this case interaction between the hydrosphere (the sea and the rainfall), the geosphere (the ground, soil, rocks), biosphere (the vegetation), and atmosphere (the winds, the clouds).