2.258625 *10²³ oxygen atoms will be produced.
<h3><u>Explanation:</u></h3>
Decomposition reaction is defined as the type of reaction where one single reactant breaks to produce more than one product only by means of heat or other external factor.
Formula of magnesium oxide = MgO.
The molecular mass of magnesium oxide = 24 +16= 40.
So in 40 grams of magnesium oxide, number of molecules is 6.023 * 10²³.
So in 15 grams of magnesium oxide,, number of molecules is 6.023 *1023 * 15/40 = 2.258625 *10²³.
From one molecule of magnesium oxide, one oxide atom will be produced.
So number of oxide atoms with 100% yeild = 2.258625 *10²³
Answer: The original volume in liters was 0.0707L
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
where,
= initial pressure of gas = 0.85 atm
= final pressure of gas = 456 mm Hg = 0.60 atm (760mmHg=1atm)
= initial volume of gas = ?
= final volume of gas = 94.0 ml
= initial temperature of gas =
= final temperature of gas =
Now put all the given values in the above equation, we get:
(1L=1000ml)
Thus the original volume in liters was 0.0707L
Answer:
0.42 g
Explanation:
<u>We have: </u>
pH = 12.10 (25 °C)
V = 800.0 mL = 0.800 L
To find the mass of sodium hydroxide (NaOH) we can use the pH:
Now, we can find the number of moles (η) of OH:
Since we have 1 mol of OH in 1 mol of NaOH, the number of moles of NaOH is equal to 1.04x10⁻² moles.
Finally, with the number of moles we can find the mass of NaOH:
<em>Where M is the molar mass of NaOH = 39.9 g/mol </em>
Therefore, the mass of sodium hydroxide that the chemist must weigh out in the second step is 0.42 g.
I hope it helps you!
So the question ask to calculate the equilibrium and ask on which of the following choices is the possible reaction and based on my calculation and the use of the formula i came up with an answer of letter B. I hope you are satisfied with my answer and feel free to ask for more.