This question is incomplete because the options are missing; here are the options:
Which of the following is LESS dense than water?
The spoon
The glass
The tablets
The bubbles
The correct answer to this question is The bubbles
Explanation:
In general, the density of materials and substances affects their buoyancy. This implies in water less dense materials will float and those with higher density will sink. In the situation presented, the only element that is less dense than water are bubbles; this is shown by the movement of the bubbles as these originate in the bottom of the glass of water but they rise to the surface, which shows they are less dense than water.
The heat of the water is shared with the ice and there for you drink will get cold but your ice will melt away from the heat going in the ice
Answer:
39.7 %
Explanation:
magnesium + oxygen ⟶ magnesium oxide
10.57 g 6.96 g 17.53 g
According to the <em>Law of Conservation of Mass</em>, the mass of the product must equal the total mass of the reactants.
Mass of MgO = 10.57 + 6.96
Mass of MgO = 17.53 g
The formula for mass percent is
% by mass = Mass of component/Total mass × 100 %
In this case,
% O = mass of O/mass of MgO × 100 %
Mass of O = 6.96 g
Mass of MgO = 17.53 g
% O = 6.96/17.53 × 100
% O = 0.3970 × 100
% O = 39.7 %
Answer:
solid silver chloride forms along with a new liquid, sodium nitrate
Explanation:
Answer:
7.23 J
Explanation:
Step 1: Given data
- Mass of graphite (m): 566.0 mg
- Initial temperature: 5.2 °C
- Final temperature: 23.2 °C
- Specific heat capacity of graphite (c): 0.710J·g⁻¹K⁻¹
Step 2: Calculate the energy required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.710J·g⁻¹K⁻¹ × 0.5660 g × (23.2°C-5.2°C)
Q = 7.23 J