For the answer to the question above asking w<span>hen an atom of n-14 is bombarded by an alpha particle, the single product is?
</span> <span>You're starting with 14/7 N, correct?
An alpha particle is two protons, two neutrons, which is 4/2, correct?
</span><span>So I</span> think the answer to your question is the third one which is <span>c. 18/9 f </span>
Answer:
22.8 L
Explanation:
Step 1: Given data
- Moles of the gas (n): 1.35 mol
- Pressure of the gas (P): 1.30 atm
- Ideal gas constant (R): 0.0821 atm.L/mol.K
Step 2: Convert "T" to Kelvin
We will use the following expression.
K = °C + 273.15 = -6 + 273.15 = 267 K
Step 3: Calculate the volume of the gas
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T / P
V = 1.35 mol × (0.0821 atm.L/mol.K) × 267 K / 1.30 atm
V = 22.8 L
Answer:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
Explanation:
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). ... IUPAC names can sometimes be simpler than older names, as with ethanol, instead of ethyl alcohol.
Answer:
Non-polar covalent bond
Explanation:
The bond between two nonmetal atoms is always covalent.
Answer:
Absolute zero temperature: Absolute zero is the temperature at which a substance have very low internal energy or in other words no heat energy in the particle.
Explanation: The temperature is very low and the particles are very cold. On cooling, speed of particle decrease. On the Celsius scale, - 273.15 is the absolute zero and on the Kelvin scale, 0 k is the absolute zero. On absolute zero temperature, the movement in the particles occurs at very low speed near to zero.