Answer:
<h3>⭐In a unit rate, the denominator is always 1. So, to find unit rate, divide the denominator with the numerator in a way that the denominator becomes 1. For example, if 50km is covered in 5.5 hours, the unit rate will be 50km/5.5 hours = 9.09 km/hour.</h3>
Step-by-step explanation:
<h2>⛄I hope it's helpful for you ⛄</h2>
1a) f(x) = I x+2 I. This is a piece-wise graph ( V form)
x = 0 →f(x) =2 (intercept y-axis)
x = -2→f(x) = 0 (intercept x-axis)
x = -3→f(x) = 1 (don't forget this is in absolute numbers)
x = -4→f(x) = 2 (don't forget this is in absolute numbers)
Now you can graph the V graph
1b) Translation: x to shift (-3) units and y remains the same, then
f(x-3) = I x - 3 + 2 I = I x-1 I
the V graph will shift one unit to the right, keeping the same y. Proof:
f(x) = I x-1 I . Intercept x-axis when I x-1 I = 0, so x= 1
Here is the answer you are looking for: (7,13/3)
Please vote my answer brainliest. thanks!
We can find this using the formula: L= ∫√1+ (y')² dx
First we want to solve for y by taking the 1/2 power of both sides:
y=(4(x+1)³)^1/2
y=2(x+1)^3/2
Now, we can take the derivative using the chain rule:
y'=3(x+1)^1/2
We can then square this, so it can be plugged directly into the formula:
(y')²=(3√x+1)²
<span>(y')²=9(x+1)
</span>(y')²=9x+9
We can then plug this into the formula:
L= ∫√1+9x+9 dx *I can't type in the bounds directly on the integral, but the upper bound is 1 and the lower bound is 0
L= ∫(9x+10)^1/2 dx *use u-substitution to solve
L= ∫u^1/2 (du/9)
L= 1/9 ∫u^1/2 du
L= 1/9[(2/3)u^3/2]
L= 2/27 [(9x+10)^3/2] *upper bound is 1 and lower bound is 0
L= 2/27 [19^3/2-10^3/2]
L= 2/27 [√6859 - √1000]
L=3.792318765
The length of the curve is 2/27 [√6859 - √1000] or <span>3.792318765 </span>units.
We need to follow PEMDAS
We have to do the addition and subtraction from left to right.
Rearrange the terms
52 - 18 - 34
52 -1(18+34)
52 -1(52)
52 - 52
0
So, at the end, your final answer is 0.