Explanation:
It is given that,
Force on piston, F₁ = 8800 N
Area, 
Area, 
Let F₂ is the force exerted on the second piston. Using Pascal's law as :
Pressure at piston 1 = Pressure at piston 2




So, the force exerted by a second piston is 35200 N. Hence, this is the required solution.
Answer:
A <em>concave</em><em> </em><em>lens</em><em> </em><em>is</em><em> </em><em>thinner</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>cen</em><em>ter</em><em> </em><em>and </em><em>thick</em><em>er</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>edges</em><em> </em><em>while</em><em> </em><em>a</em><em> </em><em>convex </em><em>lens </em><em>is</em><em> </em><em>thicker</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>and</em><em> </em><em>thinner</em><em> </em><em>at</em><em> </em><em>the</em><em> edges</em><em>.</em>
Answer:
a) X = 17.64 m
b) X = 17.64 + 4∆t^2 + 16.8∆t
c) Velocity = lim(∆t→0)〖∆X/∆t〗 = 16.8 m/s
Explanation:
a) The position at t = 2.10s is:
X = 4t^2
X = 4(2.10)^2
X = 17.64 m
b) The position at t = 2.10 + ∆t s will be:
X = 4(2.10 + ∆t)^2
X = 17.64 + 4∆t^2 + 16.8∆t m
c) ∆X is the difference between position at t = 2.10s and t = 2.10 + ∆t so,
∆X= 4∆t^2 + 16.8∆t
Divide by ∆t on both sides:
∆X/∆t = 4∆t + 16.8
Taking the limit as ∆t approaches to zero we get:
Velocity =lim(∆t→0)〖∆X/∆t〗 = 4(0) + 16.8
Velocity = 16.8 m/s
A ball kept on 3rd floor of a building.
A pendulum bob kept at 3m height
A stone thrown vertically upward.
A pressed spring.
A squashed spunge ball.
<h2>Answer:</h2><h2> b hopefully this helps you with work </h2>