The y-component of the acceleration is 
Explanation:
The y-component of the acceleration is given by

where
is the y-component of the final velocity
is the y-component of the initial velocity
t is the time elapsed
For the ice skater in this problem, we have:
u = 2.25 m/s is the initial velocity, in a direction 
v = 4.65 m/s is the final velocity, in a direction 
t = 8.33 s is the time elapsed
The y-components of the initial and final velocity are:

So the y-component of the acceleration is

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
4
Explanation:
The weight of the rock is W = mg = (80 kg) (10 m/s²) = 800 N.
The mechanical advantage is therefore 800 N / 200 N = 4.
Answer:
C) W = - 190 J
Explanation:
Notation
Wf = work done by the friction force (unknown)
Ff = force of the friction
d = distance travelled by the box = (2 pi 1.82 m) = 11.435 m
Answer:
1. Largest force: C; smallest force: B; 2. ratio = 9:1
Explanation:
The formula for the force exerted between two charges is

where K is the Coulomb constant.
q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.
For simplicity, let's combine Kq₁q₂ into a single constant, k.
Then, we can write

1. Net force on each particle
Let's
- Call the distance between adjacent charges d.
- Remember that like charges repel and unlike charges attract.
Define forces exerted to the right as positive and those to the left as negative.
(a) Force on A

(b) Force on B

(C) Force on C

(d) Force on D

(e) Relative net forces
In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

2. Ratio of largest force to smallest
