I believe it’s the scientific method or either the experimental method
Because of the higher elevation. As much as we go away from earth by increasing altitude, there will occur lacoccuren. due to this, we need to breathe fast to get suffient oxygen by time at top of the mountain. We breathe faster at the top of a tall mountain due to a natural reflex. As we go higher up a mountain, the density of air and oxygen decreases, i.e. the amount of oxygen in the air decreases along with other gases. Therefore, to maintain the regular supply of oxygen, the body breathes faster. If we go too high without oxygen tanks, we could fall unconscious and die within 8 minutes due to oxygen deprivation.
Hope this helps! let me know if you need anything else!!
Answer:
You need to know the accuracy to which you can read the ruler:
Suppose that you can read the read the ruler to the nearest milimeter
A = L * W your calculated area of the rectangle
A + ΔA = (L + ΔL) * (W + ΔW) = L W + L ΔW + W * ΔL + ΔL ΔA
Or ΔA = L ΔW + W ΔL
Where we have subtracted A = L * W and the term ΔL * ΔA is very small
So (5 + .1) * (2 + .1) - 5 * 2 = .1 * 2 + .1 * 5 = .7 cm^2
Then you report A = 10 cm^2 +- .7 cm^2 including the - sign for completeness
Answer:
A mixture of blue & red light.
Explanation:
During photosynthesis, the oxygen delivered emanates from water particles and if a weighty isotope of oxygen atom was noticed in delivered sub-atomic oxygen, the water atoms were marked with the hefty isotope.
In order to maximize the growth rate of the plant, the required wavelength of light to be used is a mixture of blue & red light. This is on the grounds that as the absorption optima of plant's photoreceptors are at wavelength frequency of red and blue light, subsequently the combination of red and blue light would be ideal for plant growth and development.
The productivity of red (650–665 nm) LEDs on plant development is straightforward on the grounds that these wavelength frequencies entirely fit with the retention pinnacle of chlorophylls and phytochrome, while the enhanced blue light presented the possibility that development under regular light could be mirrored utilizing blue and red LEDs with negligible use of energy.
Answer:
Name: Zinc
Symbol: Zn
Atomic Number: 30
Atomic Mass: 65.39 amu
Melting Point: 419.58 °C (692.73 K, 787.24396 °F)
Boiling Point: 907.0 °C (1180.15 K, 1664.6 °F)
Number of Protons/Electrons: 30
Number of Neutrons: 35
Classification: Transition metal
Crystal Structure: Hexagonal
Density at 293 K: 7.133 g/cm3
Color: bluish
('lil long, sorry)