Well there have to be two forces acting apon a object for there to be a change
Answer:
Option B) This minimizes the harmful side effects of the radiations
Explanation:
Half-life is the time taken for the decay of an radio-active atom in which it disintegrates such that it becomes half of its value at the beginning.... The nuclei should be in active mode for a longer duration sufficient for the treatment of the condition but these nuclei should have a sufficient shorter half life so that they don't get enough time to cause any damage to the health of the person other than treating the cause.
A shorter half life gives the assurance that the radiation after the treatment will leave the body without getting accumulated and cause harm to the body cells and other organs.
Given:
k = 100 lb/ft, m = 1 lb / (32.2 ft/s) = 0.03106 slugs
Solution:
F = -kx
mx" = -kx
x" + (k/m)x = 0
characteristic equation:
r^2 + k/m = 0
r = i*sqrt(k/m)
x = Asin(sqrt(k/m)t) + Bcos(sqrt(k/m)t)
ω = sqrt(k/m)
2π/T = sqrt(k/m)
T = 2π*sqrt(m/k)
T = 2π*sqrt(0.03106 slugs / 100 lb/ft)
T = 0.1107 s (period)
x(0) = 1/12 ft = 0.08333 ft
x'(0) = 0
1/12 = Asin(0) + Bcos(0)
B = 1/12 = 0.08333 ft
x' = Aω*cos(ωt) - Bω*sin(ωt)
0 = Aω*cos(0) - (1/12)ω*sin(0)
0 = Aω
A = 0
So B would be the amplitude. Therefore, the equation of motion would be x
= 0.08333*cos[(2π/0.1107)t]
Answer:
The negative sign represents the flow of charge in an opposite direction relative to point of action.