Answer:
With 250 minutes of calls the cost of the two plans is the same
Step-by-step explanation:
We must write an equation to represent the cost of each call plan.
<u>For the first plan</u>
Monthly fee
$ 13
Cost per minute
$ 0.17
If we call x the number of call minutes then the equation representing the cost c for this plan is:
![c = 13 + 0.17x](https://tex.z-dn.net/?f=c%20%3D%2013%20%2B%200.17x)
<u>For the second plan</u>
monthly fee
$ 23
Cost per minute
$ 0.13
If we call x the number of call minutes then the equation representing the cost c for this plan is:
![c = 23 + 0.13x](https://tex.z-dn.net/?f=c%20%3D%2023%20%2B%200.13x)
To know when the cost of both plans are equal, we equate the two equations and solve for x.
![13 + 0.17x = 23 + 0.13x\\\\0.17x -0.13x = 23-13\\\\0.04x = 10](https://tex.z-dn.net/?f=13%20%2B%200.17x%20%3D%2023%20%2B%200.13x%5C%5C%5C%5C0.17x%20-0.13x%20%3D%2023-13%5C%5C%5C%5C0.04x%20%3D%2010)
![x = \frac{10}{0.04}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B10%7D%7B0.04%7D)
![x = 250\ minutes](https://tex.z-dn.net/?f=x%20%3D%20250%5C%20minutes)
With 250 minutes of calls the cost of the two plans is the same: $55.5