1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
3 years ago
10

Show that if A and B are similar nxn matrices, then det(A)=det(B).

Mathematics
1 answer:
natita [175]3 years ago
7 0

Step-by-step explanation:

To prove it we just use the definition of similar matrices and properties of determinants:

If A,B are similar matrices, then there is an invertible matrix C, such that A=C^{-1}BC} (that's the definition of matrices being similar). And so we compute the determinant of such matrix to get:

det(A)=det(C^{-1}BC)=det(C^{-1})det(B)det(C)

=\frac{1}{det(C)}det(B)det(C)=det(B)

(Determinant of a product of matrices is the product of their determinants, and the determinant of C^{-1} is just \frac{1}{det(C)})

You might be interested in
I will mark as brainliest whoever gets this question
tia_tia [17]

Answer:

This is true

Step-by-step explanation:

Take for example 10=5x, you would divide both sides by 5 without changing anything to the equation.

In a case like 5=0x, you can't divide both sides by 0, so the solution is undefined.

4 0
2 years ago
Answer fast!! With explanation pls
Zepler [3.9K]
D is equivalent because brackets don’t change anything here
4 0
2 years ago
Read 2 more answers
Please help!!!!! It's urgent
Evgesh-ka [11]
       2b                     2a
----------------- +  -----------------
   (b+a)^2            (b^2 - a^2)

            2b                     2a
= ----------------- +  -------------------
      (b+a)(b+a)         (b+a)(b-a)

         2b(b - a) +  2a(b + a)
= ------------------------------------
           (b+a)(b+a)(b-a)


         2b^2 - 2ab  +  2ab + 2a^2
= ---------------------------------------
           (b+a)(b+a)(b-a)

         2b^2 + 2a^2
= ------------------------
        (b+a)(b+a)(b-a)

         2(b^2 + a^2)
= ------------------------
        (b+a)^2 (b-a)

Answer:

Numerator:        2(b^2 + a^2)
Denominator:    (b+a)^2 (b-a)
7 0
3 years ago
Which ordered pair is on the graph of the function y = 8x - 1 ?
Kobotan [32]
It is b Bc if you actually look at the other one it don’t make sense
4 0
3 years ago
The midpoint of AB is at (3,7) and A is at (0,-5). Where is B located?
olga nikolaevna [1]
\bf \textit{middle point of 2 points }\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
%  (a,b)
&({{ \square }}\quad ,&{{ \square }})\quad 
%  (c,d)
&({{ \square }}\quad ,&{{ \square }})
\end{array}\qquad
%   coordinates of midpoint 
\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)\qquad thus
\\
----------------------------\\\bf \begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
%  (a,b)
A&({{ 0}}\quad ,&{{ -5}})\quad 
%  (c,d)
B&({{ \square }}\quad ,&{{ \square }})
\end{array}\qquad
%   coordinates of midpoint 
(3,7)\impliedby midpoint\qquad thus
\\ \quad \\
\left(\cfrac{{{ x_2 }} + {{ 0}}}{2}=3\quad ,\quad \cfrac{{{ y_2 }} + {{( -5)}}}{2}=7 \right)\to 
\begin{cases}
\cfrac{{{ x_2 }} + {{ 0}}}{2}=3
\\ \quad \\
\cfrac{{{ y_2 }} + {{ -5}}}{2}=7
\end{cases}
\\ \quad \\
solve\ for\ x_2\ and\ y_2
3 0
3 years ago
Other questions:
  • Advantages and disadvantages of mean, median and mode​
    6·1 answer
  • Use a calculator or a square root table to approximate to the nearest thousandth
    11·1 answer
  • Which pair of lines is parallel? A. y=4x+1 and y+4=5 B. y=-2+x and 2y-2x=-2 C. y=1/4x + 2 and y-2=1/2x D. y=1/5x+1 and 5y+x= 10
    9·1 answer
  • Sociologists have found that information spreads among a population at an exponential rate. Suppose that the function y=525 (1 -
    5·1 answer
  • Is -√127 rational or irrational?
    5·1 answer
  • What’s the answer ???<br><br> V/8=5-3
    13·1 answer
  • Choose the ratio that you would use to convert 6.1 hours to minutes
    6·1 answer
  • Two buildings are facing each other on a road of width 12 metre . From the top of the first building, which is 10 metre high , t
    9·1 answer
  • The point
    14·1 answer
  • Find the length of arc AD. Use 3.14 for .
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!