Answer:
5 yards
Step-by-step explanation:
Answer:
56% ≤ p ≤ 70%
Step-by-step explanation:
Given the following :
Predicted % of votes to win for candidate A= 63%
Margin of Error in prediction = ±7%
Which inequality represents the predicted possible percent of votes, x, for candidate A?
Let the interval = p
Hence,
|p - prediction| = margin of error
|p - 63%| = ±7%
Hence,
Upper boundary : p = +7% + 63% = 70%
Lower boundary : p = - 7% + 63% = 56%
Hence,
Lower boundary ≤ p ≤ upper boundary
56% ≤ p ≤ 70%
Answer:
This is such a unique language. What language is this? I wanna try and learn it
Answer:
Wonka bars=3 and Everlasting Gobstoppers=24
Step-by-step explanation:
let the wonka bars be X
and everlasting gobstoppers be Y
the objective is to
maximize 1.3x+3.2y=P
subject to constraints
natural sugar
4x+2y=60------1
sucrose
x+3y=75---------2
x>0, y>0
solving 1 and 2 simultaneously we have
4x+2y=60----1
x+3y=75------2
multiply equation 2 by 4 and equation 1 by 1 to eliminate x we have
4x+2y=60
4x+12y=300
-0-10y=-240
10y=240
y=240/10
y=24
put y=24 in equation 2 we have'
x+3y=75
x+3(24)=75
x+72=75
x=75-72
x=3
put x=3 and y=24 in the objective function we have
maximize 1.3x+3.2y=P
1.3(3)+3.2(24)=P
3.9+76.8=P
80.7=P
P=$80.9
Answer:
4.80961924
Step-by-step explanation: