Answer:
Orion's belt width is 184 light years
Step-by-step explanation:
So we want to find the distance between Alnitak and Mintaka, which is the Orions belts
Let the distance between the Alnitak and Mintaka be x,
Then applying cosine
c²=a²+b²—2•a•b•Cosθ
The triangle is formed by the 736 light-years and 915 light years
Artemis from Alnitak is
a = 736lightyear
Artemis from Mintaka is
b = 915 light year
The angle between Alnitak and Mintaka is θ=3°
Then,
Applying the cosine rule
c²=a²+b²—2•a•b•Cosθ
c² =736² + 915² - 2×, 736×915×Cos3
c² = 541,696 + 837,225 - 1,345,034.1477702404
c² = 33,886.85222975954
c = √33,886.85222975954
c = 184.0838184897 light years
c = 184.08 light years
So, to the nearest light year, Orion's belt width is 184 light years
Answer:
.094
Step-by-step explanation:
Long division is really annoying, so here we go. Have it written on your paper and follow along.
When doing long division, you want to ignore the decimal until the very end. So how many times does 37 fit into 34? It doesn't, so write a 0 on top. Instead ask how many times it can fit into 347. It can only fit 9 times, so write the 9 next to the 0. Now multiply 37 times 9, since it can fit in 9 times. Place that number (333) under the 347. Subtract that and write the new number underneath (14). Bring down the 8 and add it to the end of your new number (now 148). How many times does 37 fit into 148? It goes in 4 times perfectly. Write the 4 on top, and now multiply 4 times 37, since it goes in 4 times. Put that number (148) below the original 148, subtract, and they cancel out. You're done with the problem! Add the decimal back in. Since there 3 numbers after the decimal in 3.478, the decimal will go before 3 numbers in your answer. Hope this helped!
Answer:
r = {-8, -4}
Step-by-step explanation:
Simplifying
r2 = -32 + -12r
Solving
r2 = -32 + -12r
Solving for variable 'r'.
Reorder the terms:
32 + 12r + r2 = -32 + -12r + 32 + 12r
Reorder the terms:
32 + 12r + r2 = -32 + 32 + -12r + 12r
Combine like terms: -32 + 32 = 0
32 + 12r + r2 = 0 + -12r + 12r
32 + 12r + r2 = -12r + 12r
Combine like terms: -12r + 12r = 0
32 + 12r + r2 = 0
Factor a trinomial.
(8 + r)(4 + r) = 0
Subproblem 1
Set the factor '(8 + r)' equal to zero and attempt to solve:
Simplifying
8 + r = 0
Solving
8 + r = 0
Move all terms containing r to the left, all other terms to the right.
Add '-8' to each side of the equation.
8 + -8 + r = 0 + -8
Combine like terms: 8 + -8 = 0
0 + r = 0 + -8
r = 0 + -8
Combine like terms: 0 + -8 = -8
r = -8
Simplifying
r = -8
Subproblem 2
Set the factor '(4 + r)' equal to zero and attempt to solve:
Simplifying
4 + r = 0
Solving
4 + r = 0
Move all terms containing r to the left, all other terms to the right.
Add '-4' to each side of the equation.
4 + -4 + r = 0 + -4
Combine like terms: 4 + -4 = 0
0 + r = 0 + -4
r = 0 + -4
Combine like terms: 0 + -4 = -4
r = -4
Simplifying
r = -4
Solution
r = {-8, -4}
Answer:
Step-by-step:
51⁷-51⁶ = 51⁶(51-1) = 51⁶(50)
50 is divisible by 25, so 51⁷-51⁶ is divisible by 25.
it would be > because the square root of 2 is more than 1.