Answer:
The value is 
The direction is into the surface
Explanation:
From the question we are told that
The mass density is 
The coefficient of kinetic friction is
The current the wire carries is 
Generally the magnetic force acting on the wire is mathematically represented as

Here
is the frictional force which is mathematically represented as

While
is the magnetic force which is mathematically represented as

Here
is the angle between the direction of the force and that of the current
So

So

=> ![B = \mu_k * \frac{m}{L} * [\frac{g}{I} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%20%5Cmu_k%20%2A%20%20%5Cfrac%7Bm%7D%7BL%7D%20%2A%20%5B%5Cfrac%7Bg%7D%7BI%7D%20%5D)
=> ![B = 0.25 * 0.117 * [\frac{9.8}{1.24} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%200.25%20%2A%20%200.117%20%20%2A%20%5B%5Cfrac%7B9.8%7D%7B1.24%7D%20%5D)
=> 
Apply the right hand curling rule , the thumb pointing towards that direction of the current we see that the direction of the magnetic field is into the surface as shown on the first uploaded image
a) gia tốc = vf-vi / t
a = 14-10 / 20
a = 0,2ms⁻²
b) dưới dạng a = Δv / t
v = lúc
v = 0,2 × 40
v = 8ms⁻¹
như v = d / t
do đó d = vt
d = 8 × 40
d = 320m
hãy đánh dấu là trí óc nhất
Answer:
i think it is c if not im sorry if im wrong
Explanation:
Answer:
The torque needed is 46.08 Nm
Explanation:
Given;
angular velocity, ω = 12 rad/s
time of motion, t = 0.5 s
length of the baton, r = 0.8 m
mass of the baton, 0.5 kg
The torque needed to reach the angular velocity is given by;
τ = F x r
where;
F is the centripetal force of the baton
r is the length of the baton = radius of the circular motion of the baton

Torque is given by;

Therefore, the torque needed is 46.08 Nm
Answer:

Explanation:
It is given that,
Force, 
Force, 
We need to find the force F₃ that must act on the object so that the sum of the forces is zero. Let 
According to question, 


Since, 12 + x = 0, 11 + y = 0 and 10 + z = 0
The third force is equal to,

Hence, this is the required solution.