The most interesting thing about this problem is that in order to use all of the given information, you need to ignore the laws of Physics, and never mind what the stone would really do if dropped from a real bridge in the real world.
Average velocity = (displacement) / (time for the displacement)
Displacement =
Straight path from the start point to the finish point = 45 meters down .
Time = 4.6 seconds
Average velocity = 45/4.6 = <em>9.783 meters/second down</em>
==================================
In the real world, a dropped stone would only take 3.03 seconds
to fall 45 meters.
Alternatively, a stone that fell for 4.6 seconds from rest would fall
103.7 meters, with an average velocity of 22.5 meters/second down.
But we accepted the given information, and did the best we could do
with it.
Answer:
E) the flow of energy due to a temperature difference.
Explanation:
Heat can be described as the flow of energy due to a temperature difference.
Which is expressed mathematically as;
H = MCΔT
Where;
H is the quantity of heat in a body, measured in Joules
M is the mass of the body, measured in kg
C is the specific heat capacity of the body, J/kg.K
ΔT is change in temperature or temperature difference.
So, heat energy in any system flows from a hotter region to a colder region due to temperature difference.
E) the flow of energy due to a temperature difference.
Answer:
velocity of the object
Explanation:
For an object moving at a constant acceleration, we would expect to see a position graph with a curved shape and a velocity graph with a straight shape.