Sunlight (white light) refracts through droplets of water in the atmosphere and this causes a rainbow in the sky. The correct option among all the options that are given in the question is the third option or option "C". The rainbow is caused by the reflection, refraction and dispersion of sunlight in water droplets that are present in the atmosphere.
Answer:
Push -repulsion
Pull - attraction
Explanation:
When two magnets are brought together, a push happens when a force of repulsion is experienced where the magnets move away from each other. This means their polarity is the same and this will cause the magnet to push away from each other.
When two magnets are brought together , a pull happens when a force of attraction is experienced where the magnets move close to each other. This means their polarity is different and thus causes the magnets to pull closer to each other.
Green: nm 495–570. Yellow: nm 570–590. 590–620 nm for orange. Red: 620-750 nm (400–484 THz frequency)
Solids' molecules are strongly attracted to one another. As a result, the molecules are barely moving and tightly packed. Because of this, shape and volume are fixed.
The forces of attraction and repulsion in liquids are comparable. Compared to the solid state, they move a little bit more. They then assume the shape of the container while still having a fixed capacity.
The attraction forces between the molecules in gases are quite weak. They move quite freely and grow in an effort to fill as much space as they can. Consequently, their volume and shape vary (adopt the shape of the container).
You can learn more about states of the matter here:
brainly.com/question/18538345
#SPJ4
Answer:
it will take 36.12 ms to reduce the capacitor's charge to 10 μC
Explanation:
Qi= C×V
then:
Vi = Q/C = 30μ/20μ = 1.5 volts
and:
Vf = Q/C = 10μ/20μ = 0.5 volts
then:
v = v₀e^(–t/τ)
v₀ is the initial voltage on the cap
v is the voltage after time t
R is resistance in ohms,
C is capacitance in farads
t is time in seconds
RC = τ = time constant
τ = 20µ x 1.5k = 30 ms
v = v₀e^(t/τ)
0.5 = 1.5e^(t/30ms)
e^(t/30ms) = 10/3
t/30ms = 1.20397
t = (30ms)(1.20397) = 36.12 ms
Therefore, it will take 36.12 ms to reduce the capacitor's charge to 10 μC.
Answer:
Option (D) is correct.
Explanation:
The balloon lands horizontally at a distance of 420 m from a point where it as released.
Velocity of air balloon along +X axis =10 m/s
velocity of ball=4 m/s along + X axis
the velocity of balloon gets added to the velocity of ball. So the resultant velocity of the balloon=10+4 = 14 m/s
time taken= 30 s
The distance traveled is given by d= v t
d= 14 (30)
d= 420 m
Thus the balloon lands horizontally at a distance of 420 m from a point where it as released.