Answer:
The final product is four gametes, two of them with 5 chromosomes, and the other two with 3 chromosomes each.
Explanation:
If nondisjunction occurs during meiosis 1, a pair of homologous chromosomes fail to separate, and one of the daughter cells will have the two chromosomes while the other cell will not get any chromosome from the pair.
If meiosis 1 occurs normally, but nondisjunction occurs in meiosis 2, sister chromatids fail to separate.
The usual process of meiosis produces four daughter haploid cells (n) from a diploid germ cell (2n). Each daughter cell is haploid because they have half the number of chromosomes of the original one.
If the diploid number of the original cell is 8 (2n=8), then under normal conditions, each haploid daughter cell should have 4 chromosomes (n = 4).
But in the exposed example, one pair of homologous chromosomes experiences nondisjunction during meiosis I (in the attached file, you will recognize this pair as the red one). The other chromosomes separate as usual. So one of the daughter cells will have one extra chromosome than expected (five instead of four), and the other daughter cell will lack one chromosome (three instead of four). Meiosis II occurs normally. The final result is the formation of four gametes, two of them with 5 chromosomes, and the other two with 3 chromosomes each.
The correct answer is an asexual reproduction. The process of asexual production is the process in which produces offspring that are better and is able to cope with changes in the environment. The offspring will only inherit the parent's genes, however, not the fusion of the gametes.
Bacteriophages are viruses that infect and duplicate within a bacterium. Temperate phages (such as lambda phage) can keep reproducing using both the lytic and the lysogenic cycle.
SO.... Bacteriophages
I believe is the answer that you are looking .
Let me know if its right or wrong!!
Answer:
H. pylori uses the enzyme urease to breakdown urea into ammonia (NH3) & carbon dioxide (CO2), where NH3 can act as a buffer to the acidic solution in the stomach.
Explanation:
<em>H. pylori</em> is a bacteria that has the enzyme urease to breakdown urea into ammonia (NH3) & carbon dioxide (CO2). The compound of interest here would be ammonia, or NH3. NH3 is a base, although relatively weak to other stronger bases, which means it has a pH above 7. In the stomach, the pH is acidic, or below 7. By synthesizing ammonia, <em>H. pylori </em>is able to buffer the stomach solution in a manner so that it isn't entirely acidic, but more toward the basic side, thereby allowing for its survival.