1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
8

Find the unit rate. 21 3/4 meters in 2 1/2 hours

Mathematics
1 answer:
anyanavicka [17]3 years ago
6 0
(21 3/4) / (2 1/2) =
(87/4) / (5/2) =
87/4 * 2/5 =
174/20 reduces to 8 7/10 (or 8.7)meters per hr
You might be interested in
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
What is the answe please help me
scZoUnD [109]

Answer:

Opcion C

Step-by-step explanation:

I think Maybe it could be

5 0
3 years ago
I only need 12 and 17, first good response i will give brainliest please i’m desperate
Mumz [18]

Answer:

\textsf{12.} \quad y = 6x - 5

\textsf{17.} \quad y=-\dfrac{1}{4}x-2

Step-by-step explanation:

<h3><u>Question 12</u></h3>

Find the slope of the line by substituting two points from the given table into the slope formula.

<u>Define the points</u>:

  • Let (x₁, y₁) = (2, 7)
  • Let (x₂, y₂) = (3, 13)

\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{13-7}{3-2}=\dfrac{6}{1}=6

Substitute the found slope and point (2, 7) into the point-slope formula to create an equation of the line:

\implies y-y_1=m(x-x_1)

\implies y-7=6(x-2)

\implies y-7=6x-12

\implies y=6x-5

<h3><u>Question 17</u></h3>

Given:

  • f(4) = 3
  • f(0) = -2

Therefore, two points on the line are:

  • (4, -3)
  • (0, -2)

The y-intercept is the y-value when x = 0.

Therefore, the y-intercept of the line is -2.

\boxed{\begin{minipage}{6.3 cm}\underline{Slope-intercept form of a linear equation}\\\\$y=mx+b$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $b$ is the $y$-intercept.\\\end{minipage}}

Substitute the y-intercept and the point (4, 3) into the slope-intercept formula and solve for <em>m</em> to find the slope:

\implies y=mx+b

\implies -3=m(4)-2

\implies -1=4m

\implies m=-\dfrac{1}{4}

Therefore, the equation of the line is:

y=-\dfrac{1}{4}x-2

7 0
10 months ago
How much time is it from 8:00 am to 11:25 am?
Trava [24]

Answer: 3 hours 25 mins.

8 0
2 years ago
Read 2 more answers
Will mark BRAINLIST only if correct answer
Softa [21]

Answer:

70.60

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Question 3 (1 point)
    13·1 answer
  • Stefanie bought a package of pencils for $1.75 and some erasers that cost $0.25 each. She paid a total of $4.25 for these items,
    8·1 answer
  • What are the restrictions of the domain gºh?
    9·2 answers
  • F(x)= (x+1)³ find f(x)¹<br><br>answer plz​
    7·1 answer
  • Find the surface area of the cylinder
    7·1 answer
  • How would I solve y-8+3(y+4)
    13·1 answer
  • Book covers are brought in for the seventh-grade students. The 180 book covers will be shared equally by 4 classes. If each clas
    15·1 answer
  • You are borrowing $4,285 to purchase a computer using a 36 month installment plan. Determine the annual percentage rate (APR) an
    9·1 answer
  • Please help me it would be AMAZING if you can!!!!
    10·2 answers
  • Is this expression equivalent to 1.5?<br><br> 0.15 / 10<br><br> (0.15 divided by 10)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!