Wa=0.5Wb, Ha=20, Hb is unkown
the area of rectangle a is : Wa*20
the area of rectangle b is : Wb*Hb
Rectangle a has 7 times the area of rectangle b: Wa*20=7*Wb*Hb
Replace Wa with 0.5Wb: 0.5Wb*20=7Wb*Hb => Hb=10/7
Answer: x = 32
Step-by-step explanation:
x/8 - 5 = -1
Add 5 both sides : x/8 = 4
Multiply both sides by four: x=4 times 8
C(F) is the degrees Celsius given the degrees Fahrenheit.<span />
Write the vertex form of the equation and find the necessary coefficient to make it work.
.. y = a*(x +3)^2 -2
.. = ax^2 +6ax +9a -2
You require the y-intercept to be 7. So, for x=0, you have
.. 9a -2 = 7
.. 9a = 9
.. a = 1
The equation you seek is
.. y = x^2 +6x +7
Answer:
Step-by-step explanation
Hello!
Be X: SAT scores of students attending college.
The population mean is μ= 1150 and the standard deviation σ= 150
The teacher takes a sample of 25 students of his class, the resulting sample mean is 1200.
If the professor wants to test if the average SAT score is, as reported, 1150, the statistic hypotheses are:
H₀: μ = 1150
H₁: μ ≠ 1150
α: 0.05
![Z= \frac{X[bar]-Mu}{\frac{Sigma}{\sqrt{n} } } ~~N(0;1)](https://tex.z-dn.net/?f=Z%3D%20%5Cfrac%7BX%5Bbar%5D-Mu%7D%7B%5Cfrac%7BSigma%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D%20~~N%280%3B1%29)

The p-value for this test is 0.0949
Since the p-value is greater than the level of significance, the decision is to reject the null hypothesis. Then using a significance level of 5%, there is enough evidence to reject the null hypothesis, then the average SAT score of the college students is not 1150.
I hope it helps!