Answer:
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Step-by-step explanation:
We have a sample of executives, of size n=160, and the proportion that prefer trucks is 26%.
We have to calculate a 95% confidence interval for the proportion.
The sample proportion is p=0.26.
The standard error of the proportion is:
The critical z-value for a 95% confidence interval is z=1.96.
The margin of error (MOE) can be calculated as:
Then, the lower and upper bounds of the confidence interval are:
The 95% confidence interval for the population proportion is (0.192, 0.328).
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Step-by-step explanation:
first you have to see the triangle BCD
then hypotheses and perpendicular are given so you have to find base
after finding base. In rectangle ABCD DC is length and BC is breadth so now you can find area by using the formula A = l×b
The first answer is going to be 15.42 (so b) and the second is going to be 10.67 (so a)
D 80
32/40 *100
Precent proportions
32/x = 40/100
Cross multiply