Answer:
a- x = 5/3, or x = -7/2
b- 675
c - 5·x + 2
Step-by-step explanation:
The polynomial representing the capital of the two partners = 6·x² + 11·x - 35
a. The total share is the capital of the two partners together = 6·x² + 11·x - 35
∴ When their total share is equal to 0, we have;
6·x² + 11·x - 35 = 0
Factorizing the above equation with a graphing calculator gives;
(3·x - 5)·(2·x + 7)
Therefore;
x = 5/3, or x = -7/2
b- The total expenditure, when x = 10 is given by substituting the value of <em>x </em>in the polynomial 6·x² + 11·x - 35, as follows;
When x = 10
6·x² + 11·x - 35 = 6 × 10² + 11 × 10 - 35 = 675
The total expenditure of Vicky and Micky when x = 10 is 675
c - The sum of their expenditure is (3·x - 5) + (2·x + 7) = 5·x + 2
Answer:
-9
Step-by-step explanation:
The formula for the nth term of a geometric sequence:

a₁ - the first term, r - the common ratio
![54, a_2, a_3, 128 \\ \\ a_1=54 \\ a_4=128 \\ \\ a_n=a_1 \times r^{n-1} \\ a_4=a_1 \times r^3 \\ 128=54 \times r^3 \\ \frac{128}{54}=r^3 \\ \frac{128 \div 2}{54 \div 2}=r^3 \\ \frac{64}{27}=r^3 \\ \sqrt[3]{\frac{64}{27}}=\sqrt[3]{r^3} \\ \frac{\sqrt[3]{64}}{\sqrt[3]{27}}=r \\ r=\frac{4}{3}](https://tex.z-dn.net/?f=54%2C%20a_2%2C%20a_3%2C%20128%20%5C%5C%20%5C%5C%0Aa_1%3D54%20%5C%5C%0Aa_4%3D128%20%5C%5C%20%5C%5C%0Aa_n%3Da_1%20%5Ctimes%20r%5E%7Bn-1%7D%20%5C%5C%0Aa_4%3Da_1%20%5Ctimes%20r%5E3%20%5C%5C%0A128%3D54%20%5Ctimes%20r%5E3%20%5C%5C%0A%5Cfrac%7B128%7D%7B54%7D%3Dr%5E3%20%5C%5C%20%5Cfrac%7B128%20%5Cdiv%202%7D%7B54%20%5Cdiv%202%7D%3Dr%5E3%20%5C%5C%0A%5Cfrac%7B64%7D%7B27%7D%3Dr%5E3%20%5C%5C%0A%5Csqrt%5B3%5D%7B%5Cfrac%7B64%7D%7B27%7D%7D%3D%5Csqrt%5B3%5D%7Br%5E3%7D%20%5C%5C%0A%5Cfrac%7B%5Csqrt%5B3%5D%7B64%7D%7D%7B%5Csqrt%5B3%5D%7B27%7D%7D%3Dr%20%5C%5C%0Ar%3D%5Cfrac%7B4%7D%7B3%7D)
Answer:
Step-by-step explanation:
100,000 doubles to 200,000 in 80 years then 400,000 in 80 more years
Answer:
<em>M(13)=14.3 gram</em>
Step-by-step explanation:
<u>Exponential Decay Function</u>
The exponential function is used to model natural decaying processes, where the change is proportional to the actual quantity.
An exponential decaying function is expressed as:

Where:
C(t) is the actual value of the function at time t
Co is the initial value of C at t=0
r is the decaying rate, expressed in decimal
The element has an initial mass of Mo=970 grams, the decaying rate is r=27.7% = 0.277 per minute.
The equation of the model is:


Operating:

After t=13 minutes the remaining mass is:

Calculating:
M(13)=14.3 gram