Please what is the vertex and the point of this graph k (×)=[2 (×+4)]^2+3
2 answers:
<span>The vertex form of a quadratic is given by </span><span>y = a(x – h)^2 + k</span><span>, where </span><span>(h, k)</span><span> is the vertex ; In your case , ( - 4 , 3 ) is the vertex ;</span>
K(x) = 2(x + 4)² + 3 k(x) = 2(x + 4)(x + 4) + 3 k(x) = 2(x² + 4x + 4x + 16) + 3 k(x) = 2(x² + 8x + 16) + 3 k(x) = 2(x²) + 2(8x) + 2(16) + 3 k(x) = 2x² + 16x + 32 + 3 k(x) = 2x² + 16x + 35 2x² + 16x + 35 = 0 x = <u>-(16) +/- √((16)² - 4(2)(35))</u> 2(2) x = <u>-16 +/- √(256 - 280)</u> 4 x = <u>-16 +/- √(-24) </u> 4<u> </u>x = <u>-16 +/- 2i√(6) </u> 4 x = -4 <u>+</u> 0.5i√(6) x = -4 + 0.5i√(6) x = -4 - 0.5i√(6) k(x) = 2x² + 16x + 35 k(-4 + 0.5i√(6)) = 2(-4 + 0.5i√(6))² + 16(-4 + 0.5i√(6)) + 35 k(-4 + 0.5i√(6)) = 2(-4 + 0.5i√(6))(-4 + 0.5i√(6)) + 16(-4) + 16(0.5i√(6)) + 35 k(-4 + 0.5i√(6)) = 2(16 - 2i√(6) - 2√(6) + 0.25i²√(36)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 0.25i²(6)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5i²) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5(-√(1²)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5(-√(1 × 1)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5(-√1) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5(-1)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) - 1.5) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16) - 2(4i√(6)) - 2(1.5) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 32 - 8i√(6) - 3 - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 32 - 3 - 64 + 35 - 8i√(6) + 8i√(6) k(-4 + 0.5i√(6)) = 29 - 64 + 35 + 0i√(6) k(-4 + 0.5i√(6)) = -35 + 35 + 0 k(-4 + 0.5i√(6)) = 0 + 0 k(-4 + 0,5i√(6)) = 0 (x, k(x)) = (-4 + 0.5i√(6), 0) or k(x) = 2x² + 16x + 35 k(-4 - 0.5i√(6)) = 2(-4 - 0.5i√(6))² + 16(-4 - 0.5i√(6)) + 35 k(-4 - 0.5i√(6)) = 2(-4 - 0.5i√(6))(-4 - 0.5i√(6)) + 16(-4) - 16(0.5i√(6)) + 35 k(-4 - 0.5i√(6)) = 2(16 + 2i√(6) + 2i√(6) + 0.25i²√(36)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 0.25i²(6)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5i²) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5(-√(1²)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5(-√(1 × 1)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5(-√(1)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5(-1)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) - 1.5) - 64 - 8i√(6) + 35 k(-4 - 0.45i√(6)) = 2(16) + 2(4i√(6)) - 2(1.5) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 32 + 8i√(6) - 3 - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 32 - 3 - 64 + 35 + 8i√(6) - 8i√(6) k(-4 - 0.5i√(6)) = 29 - 64 + 35 + 0i√(6) k(-4 - 0.5i√(6)) = -35 + 35 + 0 f(-4 - 0.5i√(6)) = 0 + 0 f(-4 - 0.5i√(6)) = 0 (x, k(x)) = (-4 - 0.5i√(6), 0) The point of the graph is (-4 <u>+</u> 0.5i√(6), 0), or (-4 + 0.5i√(6), 0) and (-4 - 0.5i√(6),0). The vertex of the graph is (-4, 3). <u />
You might be interested in
Answer:
100000000000000000000000020
Step-by-step explanation:
There you go
Answer: -62
Step-by-step explanation:
9( a + 2b) + c
Substitute correct values for all a, b and c.
9( -3 + 2(-2) ) + 1
9( -3 - 4 ) + 1
9(-7) + 1
-63 + 1
-62.
Answer:
big robux
Step-by-step explanation:
y=big robux big
Answer:
19.64$
Step-by-step explanation:
91.89-72.25
Answer:
Step-by-step explanation:
Standard form for a circle is:
(h, k) is the center r is the radius