Please what is the vertex and the point of this graph k (×)=[2 (×+4)]^2+3
2 answers:
<span>The vertex form of a quadratic is given by </span><span>y = a(x – h)^2 + k</span><span>, where </span><span>(h, k)</span><span> is the vertex ; In your case , ( - 4 , 3 ) is the vertex ;</span>
K(x) = 2(x + 4)² + 3 k(x) = 2(x + 4)(x + 4) + 3 k(x) = 2(x² + 4x + 4x + 16) + 3 k(x) = 2(x² + 8x + 16) + 3 k(x) = 2(x²) + 2(8x) + 2(16) + 3 k(x) = 2x² + 16x + 32 + 3 k(x) = 2x² + 16x + 35 2x² + 16x + 35 = 0 x = <u>-(16) +/- √((16)² - 4(2)(35))</u> 2(2) x = <u>-16 +/- √(256 - 280)</u> 4 x = <u>-16 +/- √(-24) </u> 4<u> </u>x = <u>-16 +/- 2i√(6) </u> 4 x = -4 <u>+</u> 0.5i√(6) x = -4 + 0.5i√(6) x = -4 - 0.5i√(6) k(x) = 2x² + 16x + 35 k(-4 + 0.5i√(6)) = 2(-4 + 0.5i√(6))² + 16(-4 + 0.5i√(6)) + 35 k(-4 + 0.5i√(6)) = 2(-4 + 0.5i√(6))(-4 + 0.5i√(6)) + 16(-4) + 16(0.5i√(6)) + 35 k(-4 + 0.5i√(6)) = 2(16 - 2i√(6) - 2√(6) + 0.25i²√(36)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 0.25i²(6)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5i²) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5(-√(1²)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5(-√(1 × 1)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5(-√1) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) + 1.5(-1)) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16 - 4i√(6) - 1.5) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 2(16) - 2(4i√(6)) - 2(1.5) - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 32 - 8i√(6) - 3 - 64 + 8i√(6) + 35 k(-4 + 0.5i√(6)) = 32 - 3 - 64 + 35 - 8i√(6) + 8i√(6) k(-4 + 0.5i√(6)) = 29 - 64 + 35 + 0i√(6) k(-4 + 0.5i√(6)) = -35 + 35 + 0 k(-4 + 0.5i√(6)) = 0 + 0 k(-4 + 0,5i√(6)) = 0 (x, k(x)) = (-4 + 0.5i√(6), 0) or k(x) = 2x² + 16x + 35 k(-4 - 0.5i√(6)) = 2(-4 - 0.5i√(6))² + 16(-4 - 0.5i√(6)) + 35 k(-4 - 0.5i√(6)) = 2(-4 - 0.5i√(6))(-4 - 0.5i√(6)) + 16(-4) - 16(0.5i√(6)) + 35 k(-4 - 0.5i√(6)) = 2(16 + 2i√(6) + 2i√(6) + 0.25i²√(36)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 0.25i²(6)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5i²) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5(-√(1²)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5(-√(1 × 1)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5(-√(1)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) + 1.5(-1)) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 2(16 + 4i√(6) - 1.5) - 64 - 8i√(6) + 35 k(-4 - 0.45i√(6)) = 2(16) + 2(4i√(6)) - 2(1.5) - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 32 + 8i√(6) - 3 - 64 - 8i√(6) + 35 k(-4 - 0.5i√(6)) = 32 - 3 - 64 + 35 + 8i√(6) - 8i√(6) k(-4 - 0.5i√(6)) = 29 - 64 + 35 + 0i√(6) k(-4 - 0.5i√(6)) = -35 + 35 + 0 f(-4 - 0.5i√(6)) = 0 + 0 f(-4 - 0.5i√(6)) = 0 (x, k(x)) = (-4 - 0.5i√(6), 0) The point of the graph is (-4 <u>+</u> 0.5i√(6), 0), or (-4 + 0.5i√(6), 0) and (-4 - 0.5i√(6),0). The vertex of the graph is (-4, 3). <u />
You might be interested in
Answer:
Step-by-step explanation:
8
Answer:
It is a straight object that begins at a point and extends forever in one direction. It is a straight object that extends infinitely in opposite directions without any width or thickness.
Use an addition or subtraction formula to find the exact value of the expression, as demonstrated in example 1. tan(105°)