1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
4 years ago
12

A three-phase wye-connected synchronous generator supplies a network through a transmission line. The network can absorb or deli

ver power while maintaining its terminal voltage constant. The four-pole, 60 Hz generator data rating are 40 MVA and 26 kV with a 0.85 p.u. reactance. The field current of the generator can be adjusted to regulate the excitation (induced) voltage from 0.75 to 1.5 times the rated voltage. The network voltage rating is 24 kV. The transmission line impedance and length are 0.07+j0.5 Ω/mi and 8 mi.
Calculate the generator induced voltage versus power factor, if the network voltage is at the rated value, and the bus absorbs the generator rated power. After this, plot the voltage regulation of the system versus the power factor. Use the induced voltage and network voltage for plotting the voltage regulation. The leading power factor varies from 0.5 to 1. What power factor corresponds to 10% regulation?

Engineering
1 answer:
Amanda [17]4 years ago
8 0

Answer:

the graph and the answer can be found in the explanation section

Explanation:

Given:

Network rated voltage = 24 kV

Impedance of network = 0.07 + j0.5 Ω/mi, 8 mi

Rn = 0.07 * 8 = 0.56 Ω

Xn = 0.5 * 8 = 4 Ω

If the alternator terminal voltage is equal to network rated voltage will have

Vt = 24 kV/√3 = 13.85 kV/phase

The alternative current is

I_{a} =\frac{40x10^{6} }{\sqrt{3}*24x10^{3}  } =926.2A

X_{s} =0.85\frac{13.85}{926.2} =12.7ohm

The impedance Zn is

\sqrt{0.56^{2}+4^{2}  } =4.03ohm

The voltage drop is

I_{a} *Z_{n} =926.2*4.03=3732.58V

r_{dc} =\frac{voltage}{2*current} =\frac{13.85}{2*926.2} =7.476ohm

rac = 1.2rdc = 1.2 * 7.476 = 8.97 Ω

The effective armature resistance is

Z_{s} =\sqrt{R_{a}^{2}+X_{s}^{2}    } =\sqrt{8.97^{2}+12.7^{2}  } =15.55ohm

The induced voltage for leading power factor is

E_{F} ^{2} =OB^{2} +(BC-CD)^{2}

if cosθ = 0.5

E_{F} =\sqrt{(13850*0.5)^{2}+(\frac{3741}{2}-926.2*12.7)^{2}   } =11937.51V

if cosθ= 0.6

EF = 12790.8 V

if cosθ = 0.7

EF = 13731.05 V

if cosθ = 0.8

EF = 14741.6 V

if cosθ = 0.9

EF = 15809.02 V

if cosθ = 1

EF = 13975.6 V

The voltage regulation is

\frac{E_{F}-V_{t}  }{V_{t} } *100

For each value:

if cosθ = 0.5

voltage regulation = -13.8%

if cosθ = 0.6

voltage regulation = -7.6%

if cosθ = 0.7

voltage regulation = -0.85%

if cosθ = 0.8

voltage regulation = 6.4%

if cosθ = 0.9

voltage regulation = 14%

if cosθ = 1

voltage regulation = 0.9%

the graph is shown in the attached image

for 10% of regulation the power factor is 0.81

You might be interested in
A Service Schedule is...
VikaD [51]

Answer:

option c

Explanation:

8 0
3 years ago
Read 2 more answers
Which option should the engineers focus on as they develop the train in the following scenario?
pav-90 [236]

Answer:

  Engineers can design a train with a regenerative braking system

Explanation:

Assuming the point of the question is that the engineers want to focus on using energy efficiently when starting and stopping, they would likely want to consider a regenerative braking system. Such a system can store energy during braking so that it can be used during starting, reducing the amount of energy that must be supplied by an outside power source.

5 0
3 years ago
Select the characteristics of an ideal operational amplifier.
SpyIntel [72]

Answer:

Numbers 4, 6, & 7 are correct

Explanation:

4- this allows the op amp to have zero voltage so that maximum voltage is transferred to output load.

6- this ensures that op amp doesn't cause loading in the original circuit, high input impedance would not deter the circuit from pulling current from it.

7- high difference between upper and lower frequencies.

3 0
3 years ago
Is 4/16 equal in measurement to 1/4
Alja [10]

Answer:yes

Explanation:

5 0
3 years ago
Read 2 more answers
Consider a pan of water being heated (a) by placing it on an electric range and (b) by placing a heating element in the water. W
Brrunno [24]

Answer:

Method B is the more efficient way of heating the water.

Explanation:

Method B is more efficient because by placing a heating element in the water as in described in method B, the heat that is lost to the surroundings is minimized which implies that more heat is supplied directly to the water. Therefore, more heating is achieved with a lesser amount of electrical energy input. Whereas placing the pan on a range means more heat losses to the surrounding and as such it will take a longer time for the water to heat up and also take more electrical energy.

7 0
3 years ago
Other questions:
  • A pressure gage connected to a tank reads 50 psi at a location where the barometric reading is 29.1 inches Hg. Determine the abs
    6·1 answer
  • A coin placed 30.8 cm from the center of a rotating, horizontal turntable slips when its speed is 50.8 cm/s.
    12·1 answer
  • Hydrogen gas (density = 1.165 kg/m^3 ) is stored at 25°C in a permeable cylindrical container which has an outer diameter of 0.2
    11·1 answer
  • Technician A says that latent heat is hidden heat and cannot be measured on a thermometer. Technician B says that latent heat is
    12·1 answer
  • ____________ is the range of all the colors created by different amounts of light.
    8·2 answers
  • "It is better to be a human being dissatisfied than a pig satisfied; better to be Socrates dissatisfied than a fool satisfied. A
    7·1 answer
  • Question 3 (5 points)
    7·1 answer
  • What should one do with a load if one is going to leave a jack under a load?
    11·1 answer
  • Need help please????????!!!!!!
    5·1 answer
  • It is ___ for motorcyclists to ride more than two abreast in a lane.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!