1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
12

A three-phase wye-connected synchronous generator supplies a network through a transmission line. The network can absorb or deli

ver power while maintaining its terminal voltage constant. The four-pole, 60 Hz generator data rating are 40 MVA and 26 kV with a 0.85 p.u. reactance. The field current of the generator can be adjusted to regulate the excitation (induced) voltage from 0.75 to 1.5 times the rated voltage. The network voltage rating is 24 kV. The transmission line impedance and length are 0.07+j0.5 Ω/mi and 8 mi.
Calculate the generator induced voltage versus power factor, if the network voltage is at the rated value, and the bus absorbs the generator rated power. After this, plot the voltage regulation of the system versus the power factor. Use the induced voltage and network voltage for plotting the voltage regulation. The leading power factor varies from 0.5 to 1. What power factor corresponds to 10% regulation?

Engineering
1 answer:
Amanda [17]3 years ago
8 0

Answer:

the graph and the answer can be found in the explanation section

Explanation:

Given:

Network rated voltage = 24 kV

Impedance of network = 0.07 + j0.5 Ω/mi, 8 mi

Rn = 0.07 * 8 = 0.56 Ω

Xn = 0.5 * 8 = 4 Ω

If the alternator terminal voltage is equal to network rated voltage will have

Vt = 24 kV/√3 = 13.85 kV/phase

The alternative current is

I_{a} =\frac{40x10^{6} }{\sqrt{3}*24x10^{3}  } =926.2A

X_{s} =0.85\frac{13.85}{926.2} =12.7ohm

The impedance Zn is

\sqrt{0.56^{2}+4^{2}  } =4.03ohm

The voltage drop is

I_{a} *Z_{n} =926.2*4.03=3732.58V

r_{dc} =\frac{voltage}{2*current} =\frac{13.85}{2*926.2} =7.476ohm

rac = 1.2rdc = 1.2 * 7.476 = 8.97 Ω

The effective armature resistance is

Z_{s} =\sqrt{R_{a}^{2}+X_{s}^{2}    } =\sqrt{8.97^{2}+12.7^{2}  } =15.55ohm

The induced voltage for leading power factor is

E_{F} ^{2} =OB^{2} +(BC-CD)^{2}

if cosθ = 0.5

E_{F} =\sqrt{(13850*0.5)^{2}+(\frac{3741}{2}-926.2*12.7)^{2}   } =11937.51V

if cosθ= 0.6

EF = 12790.8 V

if cosθ = 0.7

EF = 13731.05 V

if cosθ = 0.8

EF = 14741.6 V

if cosθ = 0.9

EF = 15809.02 V

if cosθ = 1

EF = 13975.6 V

The voltage regulation is

\frac{E_{F}-V_{t}  }{V_{t} } *100

For each value:

if cosθ = 0.5

voltage regulation = -13.8%

if cosθ = 0.6

voltage regulation = -7.6%

if cosθ = 0.7

voltage regulation = -0.85%

if cosθ = 0.8

voltage regulation = 6.4%

if cosθ = 0.9

voltage regulation = 14%

if cosθ = 1

voltage regulation = 0.9%

the graph is shown in the attached image

for 10% of regulation the power factor is 0.81

You might be interested in
Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes
Maru [420]

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).

5 0
3 years ago
Two small balls A and B with masses 2m and m respectively are released from rest at a height h above the ground. Neglecting air
statuscvo [17]

Answer:

The kinetic energy of A is twice the kinetic energy of B

Explanation:

5 0
3 years ago
Select the best answer for the question.
dalvyx [7]
I think the Acid level
5 0
3 years ago
What careers could you potential do if you
Margarita [4]

Answer:

Engineering careers. If you want to stay in engineering, your job opportunities are very much linked to your degree type, and you probably know what many of them are already. ...

Consulting. ...

Technical writing. ...

Business. ...

Investment banking. ...

Law. ...

Manufacturing and production. ...

Logistics and supply chain.

Explanation:

3 0
3 years ago
Bending is defined as? A. the application of a load tending to distort a member in one direction. B. the application of opposing
amm1812
Hi how are you today
4 0
2 years ago
Other questions:
  • Consider a fan located in a 3 ft by 3 ft square duct. Velocities at various points at the outlet are measured, and the average f
    12·1 answer
  • A furnace wall consisting of 0.25 m of fire clay brick, 0.20 m of kaolin, and a 0.10‐m outer layer of masonry brick is exposed t
    8·1 answer
  • Impact strips may be designed into a bumper cover.<br> True<br> False
    14·1 answer
  • If you should lose your balance, you should grab onto the turning center to steady yourself.
    10·1 answer
  • What different tests did the team perform to come up with a workable design?
    6·1 answer
  • John Locke believed that:
    6·1 answer
  • When would working with machinery be a common type of caught-in and caught-between<br> hazard?
    6·1 answer
  • Sea A una matriz 3x3 con la propiedad de que la transformada lineal x → Ax mapea R³ sobre R³.
    15·1 answer
  • A beam has been fixed to the floor by the pin at B and the roller at A as shown in figure 1 below.​
    7·1 answer
  • A 240-ton tugboat is moving at 6 ft/s with a slack towing cable attached to a 100-ton barge that is at rest. The cable is being
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!