Answer:
use the percentage error relation
Explanation:
The percentage error in anything is computed from ...
%error = ((measured value)/(accurate value) -1) × 100%
__
The difficulty with voltage measurements is that the "accurate value" may be hard to determine. It can be computed from the nominal values of circuit components, but there is no guarantee that the components actually have those values.
Likewise, the measuring device may have errors. It may or may not be calibrated against some standard, but even measurement standards have some range of possible error.
Answer:
Final length of the rod = 13.90 in
Explanation:
Cross Sectional Area of the polythene rod, A = 0.04 in²
Original length of the polythene rod, l = 10 inches
Tensile modulus for the polymer, E = 25,000 psi
Viscosity, 
Weight = 358 lbs - f
time, t = 1 hr = 3600 sec
Stress is given by:

Based on Maxwell's equation, the strain is given by:

Strain = Extension/(original Length)
0.39022 = Extension/10
Extension = 0.39022 * 10
Extension = 3.9022 in
Extension = Final length - Original length
3.9022 = Final length - 10
Final length = 10 + 3.9022
Final length = 13.9022 in
Final length = 13.90 in
Answer:
See the detailed answer in attached file.
Explanation :
Answer:
Option A, World War II
Explanation:
During the period of industrial revolution around 1915-25, the chemical engineering has taken a new shape. During this period (i.e around the world war I), there was rise in demand for liquid fuels, synthetic fertilizer, and other chemical products. This lead to development of chemistry centre in Germany . There was rise in use of synthetics fibres and polymers. World war II saw the growth of catalytic cracking, fluidized beds, synthetic rubber, pharmaceuticals production, oil & oil products, etc. and because of rising chemical demand, chemical engineering took a new shape during this period
Hence, option A is the right answer
Answer:
Mark me please as brainliest
Explanation:
A length of pipe will weigh the most when O A. part dimensions are such that the pipe is in the MMC. O B. the OD and ID are at the minimum allowable limit. OC. the OD and ID are at the maximum allowable limit. OD.part dimensions are such that the pipe is in the LMC