Answer:
the required minimum fiber length is 0.80365 mm
Explanation:
Given the data in the question;
Diameter D = 6.90 microns = 6.90 × 10⁻⁶ m
Bond strength ζ = 17 MPa
Shear yield strength ζ
= 68 Mpa
tensile strength of carbon fibers
= 3960 MPa.
To determine the minimum fiber length we make use of the following relation;
L = (
× D) / 2ζ
we substitute our given values into the equation;
L = ( 3960 × 6.90 × 10⁻⁶) / (2 × 17 )
L = 0.027324 / 34
L = 0.000803647 m
L = 0.000803647 × (1000) mm
L = 0.80365 mm
Therefore, the required minimum fiber length is 0.80365 mm
Answer:
a.) I = 7.8 × 10^-4 A
b.) V(20) = 9.3 × 10^-43 V
Explanation:
Given that the
R1 = 20 kΩ,
R2 = 12 kΩ,
C = 10 µ F, and
ε = 25 V.
R1 and R2 are in series with each other.
Let us first find the equivalent resistance R
R = R1 + R2
R = 20 + 12 = 32 kΩ
At t = 0, V = 25v
From ohms law, V = IR
Make current I the subject of formula
I = V/R
I = 25/32 × 10^3
I = 7.8 × 10^-4 A
b.) The voltage across R1 after a long time can be achieved by using the formula
V(t) = Voe^- (t/RC)
V(t) = 25e^- t/20000 × 10×10^-6
V(t) = 25e^- t/0.2
After a very long time. Let assume t = 20s. Then
V(20) = 25e^- 20/0.2
V(20) = 25e^-100
V(20) = 25 × 3.72 × 10^-44
V(20) = 9.3 × 10^-43 V
Answer:
Explanation:
Detailed explanation is done in the attach document.
We need to define the variables,
So,

Therefore, the probability that the repair time is more than 4 horus can be calculate as,

The probability that the repair time is more than 4 hours is 0.136
b) The probability that repair time is at least 12 hours given that the repair time is more than 7 hoirs is calculated as,


The probability that repair time is at least 12 hours given that the repair time is more than 7 hours is 0.63
Answer:
Heater power = 425 watts
Explanation:
Detailed explanation and calculation is shown in the image below