Point-slope form of a line: we need a point (x₀,y₀) and the slope "m".
y-y₀=m(x-x₀)
slope intercept form :
y=m+b
m=slope
If the line is parallel to y=2/3 x-0, the line will have the same slope, therefore the slope will be: 2/3.
Data:
(8,4)
m=2/3
y-y₀=m(x-x₀)
y-4=2/3(x-8)
y-4=2/3 x-16/3
y=2/3 x-16/3+4
y=2/3 x-4/3 (slope intercept form)
Answer: The equation of the line would be: y=2/3 x-4/3.
if we have the next slope "m",then the perendicular slope will be:
m´=-1/m
We have this equation: y=2/3 x+0; the slope is: m=2/3.
The perpendicular slope will be: m`=-1/(2/3)=-3/2
And the equation of the perpendicular line to : y=2/3 x+0, given the point (8,4) will be:
y-y₀=m(x-x₀)
y-4=-3/2 (x-8)
y-4=-3/2 x+12
y=-3/2x + 12+4
y=-3/2x+16
answer: the perpendicular line to y=2/3 x+0 , given the point (8,4) will be:
y=-3/2 x+16
Answer: if the width was not effected then the width is still 24 inches
if the area stayed the same, then
find area
area=legnth times width
288=12 times 24
so the new height./legnth =2
288=2 times width
divide by 2
144=width'
the new width =144
Answer:
141 bunches, 7 flowers left
Step-by-step explanation:
There is a not so well-known theorem that solves this problem.
The theorem is stated as follows:
"Each angle bisector of a triangle divides the opposite side into segments proportional in length to the adjacent sides" (Coxeter & Greitzer)
This means that for a triangle ABC, where angle A has a bisector AD such that D is on the side BC, then
BD/DC=AB/AC
Here either
BD/DC=6/5=AB/AC, where AB=6.9,
then we solve for AC=AB*5/6=5.75,
or
BD/DC=6/5=AB/AC, where AC=6.9,
then we solve for AB=AC*6/5=8.28
Hence, the longest and shortest possible lengths of the third side are
8.28 and 5.75 units respectively.
14. 75 105
105 75
16. 155 25
155
17. 127
18. 55 125 125
19. 115 140 40