Answer:
The dog catches up with the man 6.1714m later.
Explanation:
The first thing to take into account is the speed formula. It is
, where v is speed, d is distance and t is time. From this formula, we can get the distance formula by finding d, it is 
Now, the distance equation for the man would be:

The distance equation for the dog would be obtained by the same way with just a little detail. The dog takes off running 1.8s after the man did. So, in the equation we must subtract 1.8 from t.

For a better understanding, at t=1.8 the dog must be in d=0. Let's verify:

Now, for finding how far they have each traveled when the dog catches up with the man we must match the equations of each one.






The result obtained previously means that the dog catches up with the man 3.8571s after the man started running.
That value is used in the man's distance equation.


Finally, the dog catches up with the man 6.1714m later.
Answer:
This relationship is explained by Ohm's law
Explanation:
Ohm's law states that the current flowing through a circuit or a resistor is directly proportional to the voltage across the resistor and inversely proportional to the resistance. Where current is i, voltage is v and resistance is r, Ohm's law can be represented mathematically as
V= IR
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>
The answer to this question is <span>13,537</span>
Answer:
The electron's speed is 34007.35 m/s
Explanation:
It is given that,
Magnetic field, B = 0.34 T
Magnetic force on the electron, 
The electron follows a helical path. We have to find the speed of an electron. The formula for magnetic force is given by :

q = charge on an electron, 
v = velocity of an electron


v = 34007.35 m/s
Hence, this is the required solution.