1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
3 years ago
10

Question 4 (18 marks) (a) During a Physics Lab experiment, 1 st year SFY students analyzed the behavior of capacitors by connect

ing two capacitors to power sources. In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source. Once these capacitors are charged, they are then removed from the power sources and are interconnected by connecting the two positive plates (of the capacitors) together, and the two negative plates together. Determine the potential difference and charge across EACH capacitor. (12 marks) (b) In the second part of the lab activities, students charged another capacitor () using a 165 V source. Once charged, the capacitor was then removed from removed from the source and then connected to another capacitor () which was initially uncharged. If the students measured the final potential difference across each capacitor to be 15V, determine the value of (). (6 marks)
Physics
1 answer:
Nataly_w [17]3 years ago
4 0

Answer:

1.) 274.5v

2.) 206.8v

Explanation:

1.) Given that In one part of the lab activities, students connected a 2.50 µF capacitor to a 746 V power source, whilst connected a second 6.80 µF capacitor to a 562 V source.

The potential difference and charge across EACH capacitor will be

V = Voe

Where Vo = initial voltage

e = natural logarithm = 2.718

For the first capacitor 2.50 µF,

V = Vo × 2.718

746 = Vo × 2.718

Vo = 746/2.718

Vo = 274.5v

To calculate the charge, use the below formula.

Q = CV

Q = 2.5 × 10^-6 × 274.5

Q = 6.86 × 10^-4 C

For the second capacitor 6.80 µF 

V = Voe

562 = Vo × 2.718

Vo = 562/2.718

Vo = 206.77v

The charge on it will be

Q = CV

Q = 6.8 × 10^-6 × 206.77

Q = 1.41 × 10^-3 C

B.) Using the formula V = Voe again

165 = Vo × 2.718

Vo = 165 /2.718

Vo = 60.71v

Q = C × 60.71

Q = C

You might be interested in
A fisherman is fishing from a bridge and is using a "42.0-N test line." In other words, the line will sustain a maximum force of
lara31 [8.8K]

Answer:

(a) 42 N

(b)36.7 N

Explanation:

Nomenclature

F= force test line (N)

W : fish weight  (N)

Problem development

(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed

We apply Newton's first law of equlibrio because the system moves at constant speed:

∑Fy =0

F-W= 0

42N -W =0  

W = 42N

(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²

We apply Newton's second law because the system moves at constant acceleration:

 m= W/g , m= W/9.8 ,  m:fish mass , W: fish weight g:acceleration due to gravity

∑Fy =m*a

m= W/g , m= W/9.8 ,  m:fish mass , W: fish weight g:acceleration due to gravity

F-W= ( W/9.8 )*a

42-W=  ( W/9.8 )*1.41

42= W+0.1439W

42=1.1439W

W= 42/1.1439

W= 36.7  N

8 0
3 years ago
2. A brick is sitting on a building 22 m high. It has a mass of 7.9 kg. What amount of potential
Citrus2011 [14]

Answer:

1703.24J

Explanation:

Given parameters:

Mass of brick  = 7.9kg

Height of building  = 22m

Unknown:

Potential energy of the brick  = ?

Solution:

The potential energy of a body is the energy at rest of the body. Mathematically;

 

         P.E = mgh

m is the mass of the brick

g is the acceleration due to gravity

h is the height of the building

  Insert the given parameters and solve;

        P.E  = 7.9 x 9.8 x 22  = 1703.24J

6 0
3 years ago
A cord is used to vertically lower an initially stationary block of mass M = 3.6 kg at a constant downward acceleration of g/7.
dalvyx [7]

Answer:

(a) W_c=127.008 J

(b) W_g=148.176 J

(c) K.E. = 21.168 J

(d) v=3.4293m.s^{-1}

Explanation:

Given:

  • mass of a block, M = 3.6 kg
  • initial velocity of the block, u=0 m.s^{-1}
  • constant downward acceleration, a_d= \frac{g}{7}

\Rightarrow That a constant upward acceleration of \frac{6g}{7} is applied in the presence of gravity.

∴a=- \frac{6g}{7}

  • height through which the block falls, d = 4.2 m

(a)

Force by the cord on the block,

F_c= M\times a

F_c=3.6\times (-6)\times\frac{9.8}{7}

F_c=-30.24 N

∴Work by the cord on the block,

W_c= F_c\times d

W_c= -30.24\times 4.2

We take -ve sign because the direction of force and the displacement are opposite to each other.

W_c=-127.008 J

(b)

Force on the block due to gravity:

F_g= M.g

∵the gravity is naturally a constant and we cannot change it

F_g=3.6\times 9.8

F_g=35.28 N

∴Work by the gravity on the block,

W_g=F_g\times d

W_g=35.28\times 4.2

W_g=148.176 J

(c)

Kinetic energy of the block will be equal to the net work done i.e. sum of the two works.

mathematically:

K.E.= W_g+W_c

K.E.=148.176-127.008

K.E. = 21.168 J

(d)

From the equation of motion:

v^2=u^2+2a_d\times d

putting the respective values:

v=\sqrt{0^2+2\times \frac{9.8}{7}\times 4.2 }

v=3.4293m.s^{-1} is the speed when the block has fallen 4.2 meters.

6 0
3 years ago
A little girl riding a train rolls a ball toward the back of the train at 1.25 m/s NE. The train is traveling at a velocity of 1
Lelechka [254]

Answer:

Answer: 2.70m/s NE

Explanation:

Just did it.

4 0
4 years ago
Any transparent material that allows light of only certain color to pass through is called a filter . true or false
Dahasolnce [82]

it is TRUE hope this helps

7 0
3 years ago
Other questions:
  • A single-slit diffraction pattern is formed on a distant screen. Assuming the angles involved are small, by what factor will the
    11·1 answer
  • Consider a string of total length L, made up of three segments of equal length. The mass per unit length of the first segment is
    6·1 answer
  • A 1-kilogram object is thrown horizontally and a 2-kilogram object is dropped vertically at
    13·1 answer
  • A tray filled with ice is removed from the freezer. After a short period of time, the ice begins to melt.
    13·1 answer
  • Question 6 (10 points)
    10·1 answer
  • Three forces act on a flange as shown below. Determine the magnitude of the unknown force F (in lb) such that the net force acti
    11·1 answer
  • Given that A+B=C and C is perpendicular to A. Further if |A|-|C|, then what is the angle.(note that this are vector)
    8·1 answer
  • If you answe my question ill get you 50 pionts The smallest piece of matter that still has the properties of an element is a(n)
    12·1 answer
  • _________ transport is when something passes thru the cell membrane without any input of energy.
    12·2 answers
  • A ball is thrown up with a vertical velocity of 15 m/s and a horizontal velocity of 50 m/s. Calculate how many seconds it will t
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!