Answer:
Explanation:
a )
We shall apply the concept of impulse .
Impulse = force x time = change in momentum
= 5 x 4 = 2 ( V - 3 ) , where V is final velocity of the object
20 = 2V - 6
V = 13 m /s
b )
Impulse applied = - 7 x 4 = - 28 kg m/s ( negative as direction of force is opposite motion )
If v be the final velocity
2 x 3 - 28 = 2 v ( initial momentum - change in momentum = final momentum )
- 22 = 2v
v = - 11 m /s
object will move with 11 m /s in opposite direction .
Answer:
Electromagnetic force
Explanation:
There are four fundamental forces in nature:
- Gravity: it is the force that is exerted between any objects with mass. It is the weakest of all forces, so it is only relevant at planetary scales. It is always attractive, and it has an infinite range.
- Electromagnetic force: it is the force exerted between charged objects and between magnets (it is responsible for electric fields and magnetic fields). It is the 2nd strongest force, and it is the force that holds atoms in a molecule together. It can be attractive or repulsive, and it has an infinite range.
- Strong nuclear force: it is the strongest of all forces. It is responsible for holding the nucleons together inside the nucleus, and it is attractive. It has a very limited range (
), so it is relevant only at very small scales
- Weak nuclear force: it is the force responsible for radioactive decays and neutrino interactions. It also has a very short range (
Looking at all these definitions, we see that the term that defines the force that acts between charged particles is the electromagnetic force.
<span>12-50t=70t, t= 0.1h = 6 minutes.</span>
<span>They are different and unique from the other states of matter. Plasma is different from a gas, because it is made up of groups of positively and negatively charged particles. In neon gas, the electrons are all bound to the nucleus. In neon plasma, the electrons are free to move around the system.
Hope this helps.
</span>
Answer:
a)
, b)
, c)
, d) 
Explanation:
a) The angular velocity of the turntable after
.



b) The change in angular position is:



c) The tangential speed of a point on the rim of the turn-table:




d) The tangential and normal components of the acceleration of the turn-table:



![a_{n} = (0.365\times 10^{-3}\,m)\cdot \left[(0.421\,\frac{rev}{s} )\cdot (\frac{2\pi\,rad}{1\,rev} )\right]^{2}](https://tex.z-dn.net/?f=a_%7Bn%7D%20%3D%20%280.365%5Ctimes%2010%5E%7B-3%7D%5C%2Cm%29%5Ccdot%20%5Cleft%5B%280.421%5C%2C%5Cfrac%7Brev%7D%7Bs%7D%20%29%5Ccdot%20%28%5Cfrac%7B2%5Cpi%5C%2Crad%7D%7B1%5C%2Crev%7D%20%29%5Cright%5D%5E%7B2%7D)


The magnitude of the resultant acceleration is:

