Answer:
So electric field between the plates will be equal to 
Explanation:
We have given potential difference between accelerating plates = 24 KV = 24000 volt
Distance between the plates d = 1.5 cm = 0.015 m
We know that potential difference is given by V = Ed, here E is electric field and d is distance between plates
So 
E = 1600000 N/C = 
So electric field between plates will be equal to 
Answer:
The energy E is 1603.008 J.
Explanation:
Given that,
Capacitor = 18.4 μF
Voltage = 13.2 kV
We need to calculate the energy
Using formula of energy
.....(I)
We know that,

Put the value of Q in equation (I)

On integration

Put the value into the formula

Hence, The energy E is 1603.008 J.
Explanation:
You walk 53m to the north, then you turn 60° to your right and walk another 45m. Determine the direction of your displacement vector. Express your answer as an angle relative to east
Answer: The force acting on the proton of charge 1.5 x10-19 C moving with velocity 1.5 x10-19 C under the influence of a magnetic field of 0.7 T will be 3.15×10^-13 N.
Explanation: To find the answer we need to know more about the Lorentz magnetic force.
<h3>What is the Lorentz magnetic force acting on the proton?</h3>
- Consider a proton of charge q moving with a velocity v in a magnetic field, then the Lorentz magnetic force exerted on the proton can be expressed as,
F= q (v× B)
where,
is the angle between v and B.
- In the question, it is given that,
because, from the question it is clear that the proton is moving along x axis and the magnetic field is along the y axis.
- Thus, we can find the force acting on the proton as,

Thus, we can conclude that the Lorentz force acting on the proton will be 3.15×10^-13 N.
Learn more about the Lorentz magnetic force here:
brainly.com/question/28047923
#SPJ1