1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pie
3 years ago
15

Population in 2000 was 6.1 billion and increases at an annual rate of 1.4% estimate population in 2020

Mathematics
1 answer:
solong [7]3 years ago
6 0
I don't knowhhhhh hhhhhhhhh hhhhhhhh
You might be interested in
This week, we are covering relationships that can be approximated by linear equations. For instance, y = 453x + 3768 represents
lana [24]

Answer:

See explanation below.

Step-by-step explanation:

We assume that the data is given by :

x: 30, 30, 30, 50, 50, 50, 70,70, 70,90,90,90

y: 38, 43, 29, 32, 26, 33, 19, 27, 23, 14, 19, 21.

Where X represent the cost for scholarships in thousands of dollars and y represent the cost of life for an academic semester (The data comes from the web)

We can find the least-squares line appropriate for this data.  

For this case we need to calculate the slope with the following formula:

m=\frac{S_{xy}}{S_{xx}}

Where:

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}

So we can find the sums like this:

\sum_{i=1}^n x_i = 30+30+30+50+50+50+70+70+70+90+90+90=720

\sum_{i=1}^n y_i =38+43+29+32+26+33+19+27+23+14+19+21=324

\sum_{i=1}^n x^2_i =30^2+30^2+30^2+50^2+50^2+50^2+70^2+70^2+70^2+90^2+90^2+90^2=49200

\sum_{i=1}^n y^2_i =38^2+43^2+29^2+32^2+26^2+33^2+19^2+27^2+23^2+14^2+19^2+21^2=9540

\sum_{i=1}^n x_i y_i =30*38+30*43+30*29+50*32+50*26+50*33+70*19+70*27+70*23+90*14+90*19+90*21=17540

With these we can find the sums:

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=49200-\frac{720^2}{12}=6000

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=17540-\frac{720*324}{12}{12}=-1900

And the slope would be:

m=-\frac{1900}{6000}=-0.317

Nowe we can find the means for x and y like this:

\bar x= \frac{\sum x_i}{n}=\frac{720}{12}=60

\bar y= \frac{\sum y_i}{n}=\frac{324}{12}=27

And we can find the intercept using this:

b=\bar y -m \bar x=27-(-0.317*60)=46.02

So the line would be given by:

y=-0.317 x +46.02

We have an inverse linear relationship since the slope is negative between the variables of interest.

8 0
3 years ago
Melissa is purchasing a $160,000 home and her bank is offering her a 30-year mortgage at a 4.9% interest rate. In order to lower
balandron [24]

Answer:650.46

Step-by-step explanation:

4 0
3 years ago
A spherical ball just fits inside a cylindrical can that is 10 centimeters tall, with a diameter of 10 centimeters. Which expres
fgiga [73]

Step-by-step explanation:

Volume:

volume \: of \:  a\: sphere =  \frac{4}{3} \pi {r}^{3}  \\  =  \frac{4}{3} \pi( {5)}^{3}

3 0
3 years ago
Show with work please.
kolbaska11 [484]

Answer:

$\csc \left(\theta-\frac{\pi }{2}\right)=0.73$

Step-by-step explanation:

The identity you will use is:

$\csc \left(x\right)=\frac{1}{\sin \left(x\right)}$

So,

$\csc \left(\theta-\frac{\pi }{2}\right)$

$\csc \left(\theta-\frac{\pi }{2}\right)=\frac{1}{\sin \left(-\frac{\pi }{2}+\theta\right)}$

Now, using the difference of sin

Note: state that \text{sin}(\alpha\pm \beta)=\text{sin}(\alpha) \text{cos}(\beta) \pm \text{cos}(\alpha) \text{sin}(\beta)

$\csc \left(\theta-\frac{\pi }{2}\right)=\frac{1}{-\cos \left(\theta\right)\sin \left(\frac{\pi }{2}\right)+\cos \left(\frac{\pi }{2}\right)\sin \left(\theta\right)}$

Solving the difference of sin:

$-\cos \left(\theta\right)\sin \left(\frac{\pi }{2}\right)+\cos \left(\frac{\pi }{2}\right)\sin \left(\theta\right)$

-\cos \left(\theta\right) \cdot 1+0\cdot \sin \left(\theta\right)

-\text{cos} \left(\theta\right)

Then,

$\csc \left(\theta-\frac{\pi }{2}\right)=-\frac{1}{\cos \left(\theta\right)}$

Once

\text{sec}(-\theta)=\text{sec}(\theta)

And, \text{sec}(\theta)=-0.73

$-\frac{1}{\cos \left(\theta\right)}=-\text{sec}(\theta)$

$-\frac{1}{\cos \left(\theta\right)}=-(-0.73)$

$-\frac{1}{\cos \left(\theta\right)}=0.73$

Therefore,

$\csc \left(\theta-\frac{\pi }{2}\right)=0.73$

3 0
3 years ago
Help again please (correct answer only)
laiz [17]
The word is not clear
3 0
3 years ago
Read 2 more answers
Other questions:
  • 7/10-(-5/3) find the difference
    9·2 answers
  • A recent study reported that 73% of Americans could only converse in one language. A random sample of 130 Americans was randomly
    7·1 answer
  • Please help
    9·2 answers
  • Please help with this question thank you see attached image
    13·1 answer
  • Rounded to the nearest ten thounsend
    9·1 answer
  • Is the decimal equivalent of 13/4 is a repeating decimal
    8·1 answer
  • What is the mean absolute deviation of the following 8,9,9,,10,10,10,11,11,12,12,-2,13,13,13,13,14,14,16,17,17,18,18,18,18,20
    5·1 answer
  • Lady Gaga bought a package of pens for $2.25 and some pencils that cost $.30 each she paid a total of $4.65 for these items befo
    6·1 answer
  • 1.
    8·2 answers
  • Three times a number decreased by 5 equals 10. Write the equation and find that number
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!