The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery:
<h3>
♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫</h3>
➷ It would be 'when they have like charges.'
'Like charges' means the same charge. For example, two positive charged objects have like charges.
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Let s = rate of rotation
<span>Let r = radius of earth = 6,400km </span>
<span>Then solving (s^2) r = g will give the desired rate, from which length of day is inferred. </span>
<span>People would not be thrown off. They would simply move eastward in a straight line while the curved surface of earth fell away from beneath them.</span>
Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
Answer:
The time is 
The speed is 
Explanation:
From the question we are told that
The height of the cliff is 
Generally from kinematic equation we have that

before the jump the persons initial velocity is u = 0 m/s
So

=> 
Generally from kinematic equation

=> 
=> 