Answer: the ladder
Explanation: since the energized conductor is already in contact with the ladder there by making electric current to flow. The base of the ladder is on the ground there by making the circuit to be complete and causing electrocution.
Navigation is the art of measuring distances in order to be able to get from one place to another
Answer:
As you may know, each element has a "fixed" number of protons and electrons.
These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.
We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)
Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.
Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.
And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.
Answer:
2/R*sqrt (g*s*sin(θ)) = w
Explanation:
Assume:
- The cylinder with mass m
- The radius of cylinder R
- Distance traveled down the slope is s
- The angular speed at bottom of slope w
- The slope of the plane θ
- Frictionless surface.
Solution:
- Using energy principle at top and bottom of the slope. The exchange of gravitational potential energy at height h, and kinetic energy at the bottom of slope.
ΔPE = ΔKE
- The change in gravitational potential energy is given as m*g*h.
- The kinetic energy of the cylinder at the bottom is given as rotational motion: 0.5*I*w^2
- Where I is the moment of inertia of the cylinder I = 0.5*m*R^2
We have:
m*g*s*sin(θ) = 0.25*m*R^2*w^2
2/R*sqrt (g*s*sin(θ)) = w
- The angular velocity depends on plane geometry θ , distance travelled down slope s, Radius of the cylinder R , and gravitational acceleration g
Answer:
Hey!!
Your answer is: 0.72
Explanation:
if 760=1 then...
550=x
=550÷760= 0.72 in two s.f