Answer:
The magnification is -6.05.
Explanation:
Given that,
Focal length = 34 cm
Distance of the image =2.4 m = 240 cm
We need to calculate the distance of the object

Where, u = distance of the object
v = distance of the image
f = focal length
Put the value into the formula



The magnification is



Hence, The magnification is -6.05.
The net force = sum of all forces acting on the body
If we take left side as -ve and right side as +ve,
then,
The net force here would be equal to,
10N + (- 3N)
= 7N.
Therefore, a net force of +7N ( + indicates it's moving towards right) is acting on the book of mass 2kg.
Light from other stars take longer to reach the earth because they are farther than our sun.
Answer:
Primero, definimos el desplazamiento como la distancia entre la posición final y la posición inicial.
Así, si comenzamos abajo, luego subimos la escalera, y luego bajamos, la posición final y la posición inicial serán la misma
por lo que el desplazamiento es igual a cero.
La medida recorrida es el espacio total recorrido.
Es decir, si entre el principio y el final de la escalera hay una distancia D.
La persona que sube y baja, recorre esta distancia dos veces.
Entonces cuando una persona sube y baja la escalera, la medida de su trayectoria será 2*D.